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Criticality and Adaptivity in Enzymatic Networks
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ABSTRACT The contrast between the stochasticity of biochemical networks and the regularity of cellular behavior suggests
that biological networks generate robust behavior from noisy constituents. Identifying the mechanisms that confer this ability on
biological networks is essential to understanding cells. Here we show that queueing for a limited shared resource in broad clas-
ses of enzymatic networks in certain conditions leads to a critical state characterized by strong and long-ranged correlations
between molecular species. An enzymatic network reaches this critical state when the input flux of its substrate is balanced
by the maximum processing capacity of the network. We then consider enzymatic networks with adaptation, when the limiting
resource (enzyme or cofactor) is produced in proportion to the demand for it. We show that the critical state becomes an attractor
for these networks, which points toward the onset of self-organized criticality. We suggest that the adaptive queueing motif that
leads to significant correlations between multiple species may be widespread in biological systems.
INTRODUCTION
Transcription, translation, and signaling are stochastic pro-
cesses often dominated by small-number effects. Yet
overall, cellular behaviors proceed with remarkable predict-
ability and regularity. How are such robust and reliable sys-
tems built from noisy elements? Previous work has
suggested that some networks actively suppress noise and
others harness it (1–3), with particular attention paid to
noise in the concentrations of protein species. Certain regu-
latory networks achieve high sensitivity by exploiting mech-
anisms such as substrate competition and molecular titration
in which only relative levels of molecular species matter
(4,5). Then, correlations between different proteins are
important and the noise in the level of a single species is
less relevant. Here we show that competition for limited
shared resources in a broad class of enzymatic networks
can lead to such strong correlations and furthermore, that
network adaptation can make such highly correlated states
robust to changes in parameters. The state of an enzymatic
network characterized by strong and long-ranged correla-
tions can naturally be interpreted as a critical state, and
the adaptation leading toward this regime can likewise be in-
terpreted as a mechanism for self-organized criticality. In a
recent work, Ray et al. (6) demonstrated that expression of a
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single enzyme may have a profound effect on the physi-
ology of the whole cell by driving the metabolic network
across a threshold above which cells undergo growth arrest
due to the toxicity of overabundant metabolite. They
showed that cells may optimize biomass production by
balancing the cell growth and toxicity caused by the metab-
olite overproduction that occurs in the vicinity of the critical
state of the metabolic network.

Critical phenomena associated with phase transitions
have received much attention as possible explanations for
the complexity observed in nature, because critical systems
exhibit large fluctuations, slow dynamics, and strong corre-
lations. In particular, self-organized critical systems—those
that naturally tend to their critical states—have been sug-
gested to explain phenomena as diverse as earthquakes (7)
and evolution (8). Recent work has indicated a possibility
of near-criticality in single-enzyme systems (9) and sug-
gested that multicellular organisms harness criticality in
development (10).

Traditionally, enzymatic networks have been modeled
deterministically using the Michaelis-Menten formalism
(11). More recently, the statistical properties of enzy-
matic pathways have begun to attract significant attention
(12–16). Levine and Hwa (12) theoretically studied stochas-
tic fluctuations in different classes ofmetabolic pathways and
found that steady-state fluctuations of intermediaries are
effectively uncorrelated. This result, however, is linked to
the important assumption that different enzymatic steps are
catalyzed by different enzymes. While many enzymes are

mailto:williams@math.ucsd.edu
mailto:hasty@ucsd.edu
mailto:ltsimring@ucsd.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bpj.2016.07.036&domain=pdf


Adaptive Enzymatic Networks
highly substrate-specific, many also target multiple sub-
strates. For example,RNA transcriptsmust compete for trans-
lation by a limited number of ribosomes (17,18). Bacterial
sigma factors are coupled by their competition for RNApoly-
merases (19). In yeast, ultrasensitivity ofWee1 inactivation is
believed to be generated by competition between Wee1 and
other Cdk1 substrates for phosphorylation by Cdk1 (4). In
mice, two F-box protein paralogs FBXL3 and FBXL21 (as
part of an SCFcomplex) compete for binding ofCRYproteins
that act as circadian clock inhibitors (20). Degradation of
many different proteins within the same cell is often enabled
by a small group of enzymes such as the ClpXP protease in
bacteria or the 26S proteasome in eukaryotes.

Previous work has shown that proteins degraded by a
common protease exhibit strong correlations near the bal-
ance point where the total synthesis rate of the proteins
matches the processing capacity of the protease (13,14).
This coupling mechanism has been recently used to tightly
synchronize two independent genetic oscillators (21). It has
been shown (22,23) that posttranslation regulation via mi-
croRNA also leads to strong correlations among competing
endogenous RNAs.

Here we consider a broad class of enzymatic networks in
which different protein species either are interconverted by a
common enzyme or share a common cofactor. These enzy-
matic networks with limited shared resources model a vari-
ety of phenomena in complex biological systems, including
enzyme promiscuity in metabolic networks (24) and multi-
site phosphorylation of a protein (25). We use the mathemat-
ical theory of multiclass queues (26–28) to describe the
statistical properties of protein fluctuations in steady state
and demonstrate that in certain parameter regimes these net-
works exhibit critical behavior characterized by strong and
long-ranged correlations between molecular species.

For a system with fixed limited resources, the critical state
emerges only when the system is tuned to be near the bal-
ance point. However, allowing enzyme or cofactor levels
to adapt to the size of the protein queue makes critical
behavior robust to changes in system parameters. This
type of adaptivity has been found in a number of similar
enzymatic contexts, such as bacterial chemotaxis (29),
signal transduction in the retina (30), calcium homeostasis
(31), yeast osmoregulation (32), and temperature compensa-
tion in circadian clocks (33). Furthermore, in several recent
works, adaptivity of general enzymatic networks was
considered analytically and numerically in deterministic
approximations (30,34). We find that augmenting our
enzymatic networks with adaptive feedback regulation
gives rise to critical behavior in a broad region of parameter
space, eliminating the need to tune a system to its balance
point and indicating that these systems may exhibit self-
organized criticality. Together, our results suggest that adap-
tive queueing may be a general principle that plays a pivotal
role in conferring robustness on native biological circuits
and a designer’s tool for constructing synthetic networks.
MATERIALS AND METHODS

Shared resource-limited enzymatic networks

We study four classes of enzymatic networks in which reactions are rate-

limited by a common resource (Fig. 1, A–D). Specifically, we consider

competition for a fixed number of enzyme molecules that perform all enzy-

matic reactions (Fig. 1, A and B), or competition for a consumable cofactor

produced at a fixed rate that is required for all enzymatic reactions (Fig. 1, C

and D). For the parallel network with a shared enzyme (Fig. 1 A), we as-

sume that L copies of the enzyme E catalyze degradation of n proteins

X1;.;Xn. However, the same model can be applied to conversion of sub-

strates Xi into their corresponding products X�
i . The biochemical reactions

in this system are:

B/
l
Xi;

Xi þ E#
hþ

h�
XiE/

m
E;

XiE/
g
E;

Xi/
g
B:

(1)

Here i ¼ 1;.n; l is the synthesis rate of all proteins; h5 are binding/un-

binding rates of proteins to the enzyme; m is the rate at which an enzyme

processes a protein; and g is the dilution rate of all proteins (bound and

unbound).

For the serial network with a shared enzyme (Fig. 1 B), we assume that

the only input to the system is synthesis of protein X1 at rate l, a common

pool of L copies of the enzyme E converts Xi into Xiþ1, and the last stage of

enzymatic processing degrades the protein Xn:

B/
l
X1;

Xi þ E#
hþ

h�
XiE/

m
Xiþ1 þ E; i ¼ 1;.; n� 1;

Xn þ E#
hþ

h�
XnE/

m
E;

XiE/
g
E;

Xi/
g
B; i ¼ 1;.; n:

(2)

Note that a similar system of enzymatic reactions has been studied in a

recent work (35) where the authors found a critical slowdown of the cascade

response to external perturbations when the system approached maximum

capacity.

The last two networks have shared cofactors instead of shared en-

zymes. For them, we assume that enzymes are not rate-limiting and

exclude them from consideration. Instead, we assume that the enzy-

matic reactions consume a shared cofactor C that is produced at rate

lC and is degraded at rate gC. We consider both a parallel and a serial

network. For the parallel network (Fig. 1 C), the biochemical reactions

are:

B/
l
Xi;

B����!lC
C;

Xi þ C#
hþ

h�
XiC/

m
B;

XiC/
g
B;

Xi/
g
B;

C���!gC
B;

(3)

where i ¼ 1;.; n. For the serial network (Fig. 1 D), the reactions are:
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FIGURE 1 Generality of correlation resonance in biochemical networks. For each different type of network (A–D), levels of all species are highly corre-

lated at the critical point where the input rate l is balanced by removal of molecules from the system. (A) Parallel network of proteins degraded by a common

enzyme. (B) Serial network of proteins interconverted by a common enzyme. (C) Parallel network of molecules processed by different abundant enzymes that

all use a common cofactor. (D) Serial network of molecules processed by different abundant enzymes that all use a common cofactor. (E–H) Maximum

correlations between Xi and Xj (denoted rmax
1j ) for simulations of each network. For the two serial networks, these maximal correlations occur at l- and

j-dependent time delays tmax. Line color corresponds to the diagrams in (A–D). (I) Sample trajectories from the underloaded (left), approximately balanced

(center), and overloaded (right) regimes of the serial network shown in (B). For networks with shared enzymes, the number of enzymes was fixed at

L ¼ 80. For the networks with a shared cofactor, the cofactor was synthesized at rate lC ¼ 80 and diluted at rate g. Other parameters were g ¼ 0.01,

m ¼ 1, hþ ¼ 1000, h� ¼ 0, and L ¼ 80. To see this figure in color, go online.
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B/
l
X1;

B����!lC
C;

Xi þ C#
hþ

h�
XiC/

m
Xiþ1; i ¼ 1;.; n� 1;

Xn þ C#
hþ

h�
XnC/

m
B;

XiC/
g
B;

Xi/
g
B; i ¼ 1;.; n;

C���!gC
B:

(4)

We performed numerical simulations of these four systems of biochem-

ical reactions using the direct Gillespie algorithm (36) and computed cross
correlations among different substrates in the statistically stationary regime:

rijðtÞh
cov

�
QiðtÞ;Qjðt þ tÞ�

sisj

; (5)

where cov½QiðtÞ;Qjðt þ tÞ� ¼ hQiðtÞQjðt þ tÞi � hQiihQji is the covari-

ance between the total number of protein Xi (both free and enzyme-bound)
at time t, QiðtÞ, and the total number of protein Xj at time t þ t, Qj(t þ t),

and si ¼ ½hQ2
i i � hQii2�1=2 is the standard deviation of Qi. For simplicity,

we consider the case of irreversible binding where h� ¼ 0. Unless noted

otherwise, parameters for all simulations described here and below are

n ¼ 8, g ¼ gC ¼ 0.01, m ¼ 1, hþ ¼ 1000, h� ¼ 0, and L ¼ 80.

We also obtained analytical results for these systems for the underloaded

regime in the zero dilution limit.
Modeling of adaptive enzymatic networks

To investigate the role of adaptation in the dynamics of enzymatic

networks with shared resources, we generalize our previous models.
1080 Biophysical Journal 111, 1078–1087, September 6, 2016
Instead of keeping the number of enzymes fixed, we allow molecules of

the enzyme to be produced and diluted, with the production rate of the en-

zymes dependent on the numbers of proteins in the system. We first

consider parallel degradation of multiple species (see Fig. 4 A). We as-

sume that n proteins X1;.;Xn are synthesized at rates l1;.; ln and

degraded by the shared enzyme E that is synthesized at a rate n that de-

pends on the amount of the proteins present in the system (see below).

All species (including E) are diluted at the rate g. The reactions for the

model are:

B����!li Xi;

B/
n
E;

Xi þ E#
hþ

h�
XiE/

m
E;

XiE/
g
B;

Xi/
g
B;

E/
g
B;

(6)

where the enzyme synthesis rate n is allowed to take various forms as a

function of Q ; i ¼ 1;.; n. Here we consider only the simple case where
i

nðQ1;.;QnÞ ¼ a
Pn

i¼1Qi. Similar systems of enzymatic reactions with

feedback have been explored in the literature (see, for example, Furusawa

and Keneko (34) and He et al. (37)), but only with a single class of substrate

for each enzyme.

In the limit of large numbers of all molecules and fast binding-unbinding

reactions (the Michaelis-Menten approximation), the system can be

described by the mass-action equations for the deterministic variables Qi

and L that denote ensemble averages of total proteins Qi and enzyme L,

respectively:

dQi

dt
¼ li � mL Qi

Km þPn
i¼ 1Qi

� gQi for i ¼ 1;.; n; (7)
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dL Xn
dt
¼ a

i¼ 1

Qi � gL; (8)

where Km ¼ h�=hþ. The stable stationary solution of Eqs. 7 and 8 in im-

plicit form is:

L ¼ aL

g

�
mL

Km þ ga�1L
þ g

��1

; (9)

� ��1
Qi ¼ li
mL

Km þ ga�1L
þ g ; (10)

where L ¼ Pn
i¼1li. In the strong binding limit Km/0, these expressions

simplify to explicit formulae:

L ¼ aL

maþ g2
; (11)

gli

Qi ¼

maþ g2
; i ¼ 1;.; n: (12)

Interestingly, despite the coupling of all species by enzymatic degrada-

tion, the steady-state value of Qi depends only on its own synthesis rate

li and not on any other lj; jsi. This is a manifestation of the perfect adap-

tation caused by the integral feedback via the regulated enzyme synthesis

(37,38). Similar perfect adaptation is known to play a key role in making

bacterial chemotaxis robust against changes in overall concentration of che-

moattractants (29). However, an abrupt change in synthesis rate of one of

the proteins transiently affects the rate (per molecule) at which proteins

are removed from the system, and therefore the abundances of all proteins,

as the amount of enzyme evolves to a new balance point (see Fig. 4 B).

Substituting L from Eq. 11 into r ¼ L=Lm, we obtain that, in the station-

ary state, r ¼ 1þ g2=ðamÞ. Thus, for sufficiently large a[g2=m, the sta-

tionary regime is close to balance; however, for smaller a there are not

enough copies of the enzyme due to dilution, and the system becomes over-

loaded. On the other hand, for sufficiently large a, the Michaelis-Menten

approximation used in Eq. 7 no longer holds. Indeed, in the strong binding

limit the rate of enzymatic degradation is limited by mmin {Q, L}. There-

fore, from Eqs. 11 and 12 for a>g and Q<L, there are more copies of

the enzyme than arriving proteins, and the system becomes strongly under-

loaded in the steady state. Therefore, enzymatic adaptation should be effec-

tive within the range g2=m � a � g.

We next consider enzymatic adaptation for the serial enzymatic network

introduced earlier in Fig. 1 B. In addition to the reactions in Eq. 2, we as-

sume that enzymes are synthesized with a rate that is proportional to the to-

tal number of proteins in the system Q and are diluted at rate gE, with

g ¼ gE for gs0 (see Fig. 5 A). The reactions in this system are

B/
l
X1;

B/
n
E;

Xi þ E#
hþ

h�
XiE/

m
Xiþ1 þ E i ¼ 1;.; n� 1;

Xn þ E#
hþ

h�
XnE/

m
E;

XiE/
g
B;

Xi/
g
B; i ¼ 1;.; n;

E/
g
B:

(13)
The mass-action model of adaptive queueing in a serial network with the

continuous variables for ensemble averages Qi and L is:

dQ1

dt
¼ l� mL Q1

Km þPn
j¼ 1Qj

� gQ1; (14)

dQ mL
�
Q � Q

�

i

dt
¼ i�1 i

Km þPn
j¼ 1Qj

� gQi i ¼ 2;.; n; (15)

dL Xn
dt
¼ a

i¼ 1

Qi � gL: (16)

In the strong binding limit Km/0, the stationary solution of Eqs. 14–16

is given by

Qi ¼
lg

ma

1

ð1þ g2=maÞi; (17)

la
	

1



L ¼
g2

1� ð1þ g2=maÞn : (18)

For large a[g2=m, the number of enzymes in the stationary state ap-

proaches the exact balance level Lb ¼ nl=m. A typical transient regime

for the eight-stage chain is shown in Fig. 5 B. As in the case of adaptive

enzymatic degradation in the parallel network, the system adapts to be

very near the balance point, but the negative feedback leads to transient

ringing in the mean number of proteins and the number of enzymes in

the system when parameters are changed.
RESULTS

Criticality in nonadaptive resource-limited
enzymatic networks

Fig. 1, E–H, depicts the maximum value of the cross corre-
lations rmax

1j ¼ maxtr1jðtÞ as a function of l for the four
types of enzymatic networks shown in Fig. 1, A–D. All
four networks exhibited well-pronounced correlation reso-
nance: when the rate of resource utilization approached
the rate of resource availability, all species in the network
became highly correlated. This correlation resonance phe-
nomenon is not specific to these examples. We observed
similar behavior in networks with reversible binding (Figs.
S1 and S2 in the Supporting Material), even when binding
constants h5 are significantly varied (Fig. S3), as well as
in more complicated networks with multiple shared cofac-
tors (Fig. S4).

For a detailed analysis, we focus now on the serial shared
enzyme network (Fig. 1, B, F, and I). The other three net-
works behave in a qualitatively similar manner. This system
can, for example, represent sequential phosphorylation of a
protein by a kinase. When rhnl=ðLmÞ � 1, the network is
strongly underloaded and the correlation between Q1ðtÞ and
Qjðt þ tÞ is very close to zero for t % 0. However, the sys-
tem can still exhibit time-delayed correlations that emerge
Biophysical Journal 111, 1078–1087, September 6, 2016 1081
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due to the propagation of fluctuations in Xi downstream via
its processing by E and reaches a maximum rmax

1j at a small
positive delay tmax (Fig. 2 A, left). Interestingly, while cor-
relations at t¼ 0 are independent of position in the network,
time-shifted correlations decay along the chain (Fig. 2 A,
center-left). Near the balance point, where the input rate l

is equal to the processing capacity Lm=n, even the same-
time correlations between all pairs of species are high.
This is remarkable, given that Xi can only be introduced at
the expense of Xi�1 (Fig. 2 A, center-right).

Fig. 2 B shows the dependences of rmax
1j and tmax on the

input rate l. As l increases, correlations become larger,
and become nonzero even for t % 0. In the strongly over-
loaded regime (r >> 1), the correlations decay much
more slowly than in the underloaded case (Fig. 2 A, right).
The time lag tmax at which the cross-correlation coefficients
r1j are maximal also becomes much longer. The maximal
correlation itself r1jðtmaxÞ reaches a sharp peak near bal-
ance. As l is increased substantially beyond the balance
point, rmax

1j decreases, while tmax grows linearly (Fig. 2 B).
High correlations and slowing of the dynamics are strong

indicators of emergent criticality in this enzymatic network.
The serial network also allows us to define a distance be-
tween two species: the number of enzymatic steps between
them. We therefore computed the correlation length Lc for
the serial networks that we define as the (linearly interpo-
lated) number of stages at which the maximum cross-corre-
lation coefficient with the first protein is >0.5 (see Section
S4 in the Supporting Material). We find that the correlation
length Lc reaches a sharp maximum near balance where all
species are highly correlated (Fig. 2 C).
A

B C
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We also computed the susceptibility of the serial network
as a function of the input rate l. We defined the suscepti-
bility in the usual way as the normalized rate of change of
the output in response to a small stepwise change of input.
The results presented in Section S5 in the Supporting Mate-
rial show that susceptibility has a strong peak near the bal-
ance point, similar to the correlation peak. This gives further
evidence that the enzymatic network near balance indeed
can be characterized as critical.

We next sought analytical results describing the behavior
of this network. For the underloaded regime (r < 1), it can
be rigorously shown that in the absence of dilution (g ¼ 0)
and in the limit of instant irreversible binding (hþ / N,
h� ¼ 0), the steady-state distribution for X1;.;Xn in the se-
rial network is the same as that for a parallel network where
each of the proteins is produced independently at the rate l
and they all share the same pool of L enzymes that process
them (see Section S6 in the Supporting Material). Therefore,
in the underloaded regime with no dilution, steady-state
same-time correlations among any pair of different proteins
in the serial network are the same. From our previous results
(13), it follows that the same-time correlation between any
two different proteins Xi and Xj is equal to:

rijðt ¼ 0Þ ¼ F� 1

F� 1þ n
; (19)

where F is the Fano factor (the ratio of the variance to the
mean) of the steady-state distribution of the total number
of all proteins, Q ¼ P

iQi. The moments of Q and its
Fano factor can be found analytically in closed form (13).
FIGURE 2 (A) Time-shifted correlations in

different regimes for the serial network with a shared

enzyme (see Fig. 1 B). The broadening of the r1jðtÞ
curves indicates that the correlation time increases

as criticality is approached. (B) The value of the

maximum correlation between Q1 and Qj ðrmax
1j Þ

and the time delay at which that correlation is found

ðtmaxÞ. In the underloaded regime, the delay is short

and correlations are small. Near the balance point,

delay increases slightly while correlation increases

dramatically. In the overloaded regime, the delay be-

comes very large and correlations decrease. (C) Cor-

relation length in the serial biochemical network with

a shared enzyme. Correlation length was calculated

as interpolated distance in reaction steps at which

rmax
1j ¼ 0:5 (see Section S4 in the Supporting Mate-

rial). Parameters for all simulations were g ¼ 0.01,

m ¼ 1, hþ ¼ 1000, h� ¼ 0, and L ¼ 80. To see this

figure in color, go online.
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For L ¼ 1, the expressions simplify and rij ¼ 1=
ð1þ nðr�1 � 1ÞÞ. For other values of L, one can obtain
the leading term in the Taylor expansion of the correlation
for small r (strongly underloaded regime), rijzðrLÞL=
ðL!nÞ þ O½ðrLÞLþ1�. It can also be shown that the correlation
rij approaches 1 as r / 1. Fig. 3 A demonstrates excellent
agreement between our analytical formulae and stochastic
simulations.

In the strongly underloaded regime (r << 1), the enzy-
matic reactions are approximately first-order (the propen-
sities depend only on the number of proteins and not on
the number of enzymes, because free enzymes are nearly
always available). Using this approximation, the time-de-
layed correlations between protein levels are given by

r1jðtÞ ¼ ðmtÞj�1

ðj � 1Þ!e
�mt; t > 0; (20)

and are 0 for negative t-values (see Section S7 in the
Supporting Material). For large positive t, correlations
decay exponentially with rate m. Fig. 3 B shows good
agreement between this theoretical formula and direct nu-
merical simulations of an eight-stage enzymatic chain.
This calculation can be straightforwardly extended to the
case of nonzero dilution (see Section S7 in the Supporting
Material).
Adaptation in a parallel enzymatic network

The critical behavior of enzymatic networks near the bal-
ance point described above is striking, but requires precise
A B

C D
tuning of system parameters. However, living organisms
employ numerous adaptive strategies to optimize resource
allocation in the face of uncertain and variable environ-
mental conditions. Indeed, having too many enzymes to
process arriving proteins would be wasteful, while an insuf-
ficient number of enzymes would create an excess of unpro-
cessed molecular species. We wondered whether adaptation
of enzyme levels would drive the system toward the balance
point and lead to the critical state, eliminating the need for
parameter tuning.

We performed stochastic simulations of the adaptive sys-
tem associated with Eq. 6 with two types of proteins and
with n ¼ aðQ1 þ Q2Þ. Fig. 4, C and D, shows the correla-
tions between different proteins, as well as mean enzyme
levels, as functions of a. The range of a values that effec-
tively leads to adaptation can be seen as the region where
the enzyme level is flat in Fig. 4 D. In agreement with
the above estimate, for g ¼ 0.01 and m ¼ 1 it spans the
range from 10�4 to 10�2. Fig. 4 E shows the heat maps
of the steady-state correlations for different values of
l1,l2 with or without adaptation. While in the nonadaptive
case the correlations are high only in the vicinity of the bal-
ance line l1 þ l2 ¼ mL, in the adaptive cases the correla-
tions are strong through nearly the whole range of
synthesis rates. Similarly strong correlation in a broad
range of input rates is obtained for other forms of the adap-
tation function; for example, when the adaptation rate is
proportional to the number of unbound proteins of only
one kind, n ¼ aQu

1 (see Section S9 in the Supporting
Material).

If the adaptation rate n depends only on the sum of all
protein counts, and the binding of proteins to enzyme is
FIGURE 3 Comparison of analytical results to

simulation for a serial shared-enzyme network.

(A) Same-time correlations between species as a

function of the input rate l for the no-dilution

network. (Points) Correlations from stochastic

simulations; (lines) correlation predicted using

Eq. 19. (B) Time-delayed correlations r1jðtÞ in

the underloaded regime with no dilution. (Points)

Correlations from stochastic simulations; (lines)

correlations predicted from Eq. 20. (C) Temporal

decay of correlations in different regimes with

g ¼ 0.01. In the underloaded regime (l ¼ 8, left),

correlations decay as e�ðmþgÞt . In the overloaded

regime (l ¼ 15, right), they decay as e�gt . Near

balance (center), correlation decay slows dramati-

cally, but for nonzero g cannot decay slower than

e�gt . (D) In the absence of dilution, correlations

near balance decay very slowly. Vertical scale

shared with (C). Parameters not shown were m ¼
1, hþ ¼ 1000, h� ¼ 0, and L ¼ 80. To see this

figure in color, go online.
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FIGURE 4 Adaptive queueing in a parallel enzy-

matic network. (A) Diagram of the system. (B) Per-

fect adaptation in the deterministic model of the

adaptive queueing network with two proteins (n ¼
2) with l1 ¼ 10, l2 ¼ 15, Km ¼ 0.1, m ¼ 1, g ¼
0.01, and a¼ 0.001. When l2 is transiently changed

from 15 to 20 (shaded region), all species initially

respond. The other species Q1 then settles to its

original steady-state value. (C) Dependence of cor-

relation on a in stochastic simulations of a two-spe-

cies system with l1 ¼ 10, l2 ¼ 15, m ¼ 1, g ¼ 0.01,

hþ ¼ 1000, and h� ¼ 0. Adaptation is effective for a

across roughly three orders of magnitude. (D)

Dependence of L (mean enzymes including those

bound to proteins) on a in stochastic simulations

compared with the analytical expression given in

Eq. 11. Mean enzyme level is constant for a in the

range that gives effective adaptation. (E) Same-

time correlations in stochastic simulations for

different combinations of l1 and l2 with a ¼ 0.01

and other parameters as in (C). In the constant

enzyme case (left), correlations are only high in

the vicinity of the balance line l1þ l2 ¼ 20. In the

systems adapting to either total species (left) or un-

bound species (right), correlations are high for

nearly all combinations of rates. Same-time correla-

tions are used because the absence of spatial struc-

ture in the parallel network removes the delays

seen in serial networks. (F) Same-time correlations

between Q1 and Q2 in stochastic simulations of

nonadaptive and adaptive networks. Here l2 ¼ 10

with l1 varying. For a constant number of enzymes,

the correlation peaks near the balance point (left);

however, when enzyme levels adapt to total number

of proteins (center) or the number of unbound pro-

teins (right), correlations are high for nearly all in-

puts. (Lines) Results of full stochastic simulations

of the expressions in Eq. 6. (Points) Correlations

calculated using Eq. S23 with the Fano factor

computed from numerical simulation of the 2DMar-

kov process given in the expressions in Eq. 21. To

see this figure in color, go online.
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very fast, an extension of the method used in Mather et al.
(13) allows us to approximately express the multidimen-
sional steady-state distribution for the protein counts in
terms of that for a two-dimensional (2D) birth-death pro-
cess that tracks the sum Q and the number L of the enzyme
copies that are in the system. Under an instant binding
assumption, this finding reduces the dimension of the nat-
ural Markovian state descriptor from 2nþ1 to 2 and allows
us to explore steady-state correlations using numerical
methods for the 2D process (Q,L). Furthermore, it can be
rigorously shown (see Section S8 in the Supporting Mate-
rial) that the correlation coefficient rijðt ¼ 0Þ can still be
1084 Biophysical Journal 111, 1078–1087, September 6, 2016
expressed as a function of the Fano factor of the one-
dimensional distribution of the total number of proteins us-
ing Eq. 19 when all production rates are equal. For a sys-
tem with different production rates lislj for isj, Eq. S23
(Supporting Material) can be used.

Under the instant binding assumption, the stochastic dy-
namics of protein X (which denotes any type of protein
free or bound to E) and enzyme E (also both free or bound
to protein) can be described by the following set of
biochemical reactions (where the quantities above the ar-
rows now indicate propensities of the corresponding
reactions):
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B/
L
X;

B�!nðQÞE;
X �!mðQ^LÞ

B;

X���!gQf
B;

E���!gLf
B;

X þ E���!gðQ^LÞ
B;

(21)

where Q and L values are the total numbers of protein X and
enzyme E at time t, respectively; ðQ^LÞ indicates the
smaller of Q and L; and Qf ¼ Q� ðQ^LÞ and
Lf ¼ L� ðQ^LÞ values are the number of unbound copies
of protein and enzyme, respectively. The last reaction de-
notes simultaneous removal of one protein and one enzyme
when a protein-enzyme complex is diluted.

This set of reactions describes the dynamics of a 2D
nonlinear birth-death process for which the steady-state dis-
tribution cannot be found analytically. An approximate solu-
tion can be found assuming that the adaptation rate nðQÞ and
dilution rate g are small compared with protein synthesis
and enzymatic degradation rates L;m. In this case, the num-
ber of enzymes changes slowly compared with the number
of proteins, and the marginal probability distribution for Q
equilibrates toward the stationary distribution PsðQ j LÞ cor-
responding to a fixed value of L (see Mather et al. (13)). The
slow dynamics of L can be approximated as a nonlinear
birth-death process with the birth rate nðhQ j LiÞ and the
death rate g. In the general case of nonsmall a, we can
perform numerical simulations of the reduced 2D birth-
death process (Q, L) to compute the Fano factor F and
then use Eq. 19 to compute the correlations between Q1

and Q2. Fig. 4 F compares this method with the results of
direct simulations of the system described by Eq. 6. As ex-
pected, there is excellent agreement between the two.
Adaptation in serial enzymatic networks

To investigate the statistical properties of the adaptive se-
rial network, we performed direct numerical simulations
of the full stochastic model associated with Eq. 13. As
with the parallel network, for a broad range of intermediate
values of a, the cross correlations between Q1 and other Qk

are high (Fig. 5 C) and nearly identical independent of l
(Fig. 5 E). As before, the mean number of enzymes exhibits
a plateau in the region of adaptation in excellent agreement
with Eq. 18, but for larger a > g deviates up when
the Michaelis-Menten approximation loses its validity
(Fig. 5 D). Interestingly, the temporal cross-correlation
functions demonstrate nonmonotonous behavior that is
due to stochastic ringing caused by the negative feedback
loop. The frequency of ringing is, as expected, dependent
on a (Fig. 5 F).
We obtained similar results for a network with enzyme
synthesis rate proportional to the abundance of the first or
the last protein in the series (see Sections S10 and S11 in
the Supporting Material). These results show that adaptation
and approach to criticality also takes place in these cases;
however, in the second case the adaptation is less robust.
In particular, it is possible for enzyme production to perma-
nently cease if both E and Q8 are zero at the same time.
However, if we add small basal synthesis of E, adaptation
becomes robust again. We also considered the case when n

is proportional to the total abundance of unbound proteins
(see Section S12 in the Supporting Material). The latter
form of adaptation generated even higher correlations than
those using total proteins, because the number of unbound
proteins is more sensitive to queueing.

We also computed the network susceptibility to small
input perturbations using the deterministic model Eqs.
14–16 (and see Section S5 in the Supporting Material).
Again similarly to the cross-correlation analysis, the suscep-
tibility becomes virtually independent of l because the
network adapts to the neighborhood of the balance point.
However, generally the susceptibility of the adaptive
network is lower than for the nonadaptive one at the balance
because of the negative feedback, which is known to reduce
the magnitude of the response to external perturbations.
DISCUSSION

Much attention has been given to the question of how cells
are able to function reliably when biological networks are
seemingly so noisy. Here we used a queueing approach to
study a broad class of networks in which protein species
are processed by a common enzyme or utilize a common
cofactor. Despite the noisiness of the networks’ dynamics
due to intrinsic stochasticity of the underlying biochemical
reactions, we found strong and long-range correlations
among multiple protein species near the balance between
the substrate input rates and the processing capacity of the
network. Furthermore, the correlation time also increases
dramatically as the system approaches the balance point.
This phenomenology suggests that, at the balance point,
enzymatic networks are poised near a critical state.

We also considered network adaptation where the enzyme
(or cofactor) synthesis is regulated by the protein species
processed by the enzyme. Our theoretical analysis shows
that for sufficiently slow adaptation, the network automati-
cally approaches the balance point with large and slowly
decaying correlations. An adaptive queueing network there-
fore behaves much like a self-organized critical system
where the critical point is an attractor (39). It is interesting
to note that self-organized critical states characterized by
a power-law distribution in the abundances of different reac-
tants in random autocatalytic metabolic networks with
active transport of nutrients were found in Furusawa and
Kaneko (34) and Awazu and Kaneko (40), where this was
Biophysical Journal 111, 1078–1087, September 6, 2016 1085
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FIGURE 5 Simulations of the adaptive serial

enzymatic network. (A) Schematic of the adaptive

network. The production rate of the enzyme E is

set by n. Here we consider n ¼ aQ, where Q is

the total number of proteins (free and enzyme-

bound) in the system. (B) Results from a determin-

istic model of the adaptive queueing system with

m ¼ 1, g ¼ 0.01, a ¼ 0.005, and Km ¼ 0:1.

When the input rate of X1 is changed, levels of all

proteins transiently oscillate before reaching a

new steady-state level. (C) Maximum correlations

between X1 and Xj as a function of the adaptation

parameter a for l ¼ 15. For very low a, not enough

enzyme is produced and for high a, enough enzyme

is produced that the system is always underloaded.

(D) Mean total enzyme level for different values of

a. The range where adaptation occurs can be seen

as the flat region of the curve. (E) Maximum corre-

lations between X1 and Xj as a function of l for a¼
0.005. (F) Correlations as a function of t for

different values of a with l ¼ 15. Oscillations in-

crease in strength and frequency for larger a but

eventually disappear for high a. In (C–F), other

simulation parameters are m ¼ 1, g ¼ 0.01, hþ ¼
1000, and h� ¼ 0. To see this figure in color, go

online.
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shown to lead to optimal cell growth. The tendency of adap-
tive networks to spontaneously approach a critical state may
also explain recent experimental observations of criticality
in neuronal systems (41) and development (10). The ability
of signal transduction cascades to respond to changes in the
statistical properties of the input and maximize their infor-
mation capacity also relies on enzymatic adaptation (30).
Taken together with ours, these results point toward the
ubiquity and wide-ranging implications of the tendency of
enzymatic networks toward criticality.

Emergence of adaptivity of the kind considered here
appears to be evolutionarily advantageous, because the
balance between the input flux and the processing capac-
ity provides optimal use of enzymatic resources and max-
imizes cell growth. It can be achieved if one of the
species in the queue acts as a transcription factor or
posttranscriptional regulator of the limiting enzyme or
cofactor synthesis. This motif is in fact observed in nat-
ural systems. For example, the Saccharomyces cerevisiae
transcription factor Rpn4 stimulates production of protea-
some genes but is itself degraded by the proteasome (42).
In a population context, when overproduction of certain
1086 Biophysical Journal 111, 1078–1087, September 6, 2016
species becomes toxic, the adaptation toward balance
may lead to complex, possibly bimodal distributions of
cellular phenotypes (6).

The balance point also appears to be optimal for syn-
chronizing levels of the interacting species in a network.
In the underloaded regime, changes in protein levels
propagate across the network very rapidly, but with low
fidelity (small correlations). In the overloaded regime cor-
relations are high, but the delay in their propagation is
large. At the balance point, correlations are maximized,
while delay times are only slightly increased compared
to the underloaded regime. Given the generality of our
model and the ubiquity of molecular competition, we
anticipate that understanding these more general cases
might provide useful insights for whole cell models with
many substrates connected by a core of common enzymes
and cofactors.
SUPPORTING MATERIAL

Supporting Materials and Methods and 12 figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(16)30616-6.

http://www.biophysj.org/biophysj/supplemental/S0006-3495(16)30616-6
http://www.biophysj.org/biophysj/supplemental/S0006-3495(16)30616-6


Adaptive Enzymatic Networks
AUTHOR CONTRIBUTIONS

R.J.W., J.H., and L.S.T. conceived and designed research; P.J.S. and L.S.T.

performed and analyzed numerical simulations; and all authors participated

in theoretical analysis and contributed to writing the article.
ACKNOWLEDGMENTS

This work was supported by the National Science Foundation and the Na-

tional Institutes of Health under the Joint DMS/NIGMS Initiative to Sup-

port Research at the Interface of the Biological and Mathematical

Sciences, National Science Foundation grant No. DMS-1463657, National

Science Foundation grant No. DMS-1206772, and the San Diego Center for

Systems Biology, National Institutes of Health grant No. P50-GM085764.
REFERENCES

1. Rao, C. V., D. M.Wolf, and A. P. Arkin. 2002. Control, exploitation and
tolerance of intracellular noise. Nature. 420:231–237.

2. Eldar, A., andM. B. Elowitz. 2010. Functional roles for noise in genetic
circuits. Nature. 467:167–173.

3. Tsimring, L. S. 2014. Noise in biology. Rep. Prog. Phys. 77:026601.

4. Kim, S. Y., and J. E. Ferrell, Jr. 2007. Substrate competition as a source
of ultrasensitivity in the inactivation of Wee1. Cell. 128:1133–1145.

5. Buchler, N. E., and M. Louis. 2008. Molecular titration and ultrasensi-
tivity in regulatory networks. J. Mol. Biol. 384:1106–1119.

6. Ray, J. C. J., M. L. Wickersheim,., G. Balázsi. 2016. Cellular growth
arrest and persistence from enzyme saturation. PLOS Comput. Biol.
12:e1004825.

7. Bak, P., and C. Tang. 1989. Earthquakes as a self-organized critical
phenomenon. J. Geophys. Res. 94:15635–15637.

8. Sneppen, K., P. Bak, ., M. H. Jensen. 1995. Evolution as a self-orga-
nized critical phenomenon. Proc. Natl. Acad. Sci. USA. 92:5209–5213.

9. Elf, J., J. Paulsson,., M. Ehrenberg. 2003. Near-critical phenomena in
intracellular metabolite pools. Biophys. J. 84:154–170.

10. Krotov, D., J. O. Dubuis, ., W. Bialek. 2014. Morphogenesis at crit-
icality. Proc. Natl. Acad. Sci. USA. 111:3683–3688.

11. Sauro, H. M. 2012. Enzyme Kinetics for Systems Biology. Future Skill
Software, Seattle, WA.

12. Levine, E., and T. Hwa. 2007. Stochastic fluctuations in metabolic
pathways. Proc. Natl. Acad. Sci. USA. 104:9224–9229.

13. Mather, W. H., N. A. Cookson, ., R. J. Williams. 2010. Correlation
resonance generated by coupled enzymatic processing. Biophys. J.
99:3172–3181.

14. Cookson, N. A., W. H. Mather, ., J. Hasty. 2011. Queueing up for
enzymatic processing: correlated signaling through coupled degrada-
tion. Mol. Syst. Biol. 7:561.

15. Mather, W. H., J. Hasty, ., R. J. Williams. 2013. Translational cross
talk in gene networks. Biophys. J. 104:2564–2572.

16. Hochendoner, P., C. Ogle, and W. H. Mather. 2014. A queueing
approach to multi-site enzyme kinetics. Interface Focus. 4:20130077.

17. Vind, J., M. A. Sørensen, ., S. Pedersen. 1993. Synthesis of proteins
in Escherichia coli is limited by the concentration of free ribosomes.
Expression from reporter genes does not always reflect functional
mRNA levels. J. Mol. Biol. 231:678–688.

18. Baumgartner, B. L., M. R. Bennett, ., J. Hasty. 2011. Antagonistic
gene transcripts regulate adaptation to new growth environments.
Proc. Natl. Acad. Sci. USA. 108:21087–21092.

19. Mauri, M., and S. Klumpp. 2014. A model for sigma factor competition
in bacterial cells. PLOS Comput. Biol. 10:e1003845.
20. Yoo, S.-H., J. A. Mohawk, ., J. S. Takahashi. 2013. Competing E3
ubiquitin ligases govern circadian periodicity by degradation of CRY
in nucleus and cytoplasm. Cell. 152:1091–1105.

21. Prindle, A., J. Selimkhanov,., J. Hasty. 2014. Rapid and tunable post-
translational coupling of genetic circuits. Nature. 508:387–391.

22. Figliuzzi, M., E. Marinari, and A. De Martino. 2013. MicroRNAs as a
selective channel of communication between competing RNAs: a
steady-state theory. Biophys. J. 104:1203–1213.

23. Bosia, C., A. Pagnani, and R. Zecchina. 2013. Modelling competing
endogenous RNA networks. PLoS One. 8:e66609.

24. Babtie, A., N. Tokuriki, and F. Hollfelder. 2010. What makes an
enzyme promiscuous? Curr. Opin. Chem. Biol. 14:200–207.

25. Cohen, P. 2000. The regulation of protein function by multisite phos-
phorylation—a 25 year update. Trends Biochem. Sci. 25:596–601.

26. Kelly, F. P. 2011. Reversibility and Stochastic Networks. Cambridge
University Press, Cambridge, UK.

27. Williams, R. J. 1998. Diffusion approximations for open multiclass
queueing networks: sufficient conditions involving state space
collapse. Queueing Syst. 30:27–88.

28. Bramson, M. 1998. State space collapse with application to heavy
traffic limits for multiclass queueing networks. Queueing Syst.
30:89–140.

29. Yi, T.-M., Y. Huang, ., J. Doyle. 2000. Robust perfect adaptation in
bacterial chemotaxis through integral feedback control. Proc. Natl.
Acad. Sci. USA. 97:4649–4653.

30. Detwiler, P. B., S. Ramanathan, ., B. I. Shraiman. 2000. Engineering
aspects of enzymatic signal transduction: photoreceptors in the retina.
Biophys. J. 79:2801–2817.

31. El-Samad, H., J. P. Goff, and M. Khammash. 2002. Calcium homeosta-
sis and parturient hypocalcemia: an integral feedback perspective.
J. Theor. Biol. 214:17–29.
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1 Serial enzymatic network with reversible binding

Correlation resonance also occurs in enzymatic networks with reversible binding of enzyme to substrate.
To demonstrate this, we simulated the serial enzymatic network shown in Figure 1B of the main text with
η+ = 100, η− = 10 (Supp. Fig. S1). We also fixed λ = 10.9 and varied η+ and η− while keeping their ratio
fixed at Km = η−/η+ = 0.1 (Supp. Fig.S2).
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Figure S1: Maximal correlations between X1 and
Xj , j = 2, ..., 8 for a serial enzymatic network with re-
versible binding with η+ = 100 and η− = 10, giving
Km = 0.1. As in Figure 1 of the Main Text, correla-
tion resonance is observed near the balance point λ = 10,
slightly offset by finite dilution rate. Other parameters
were µ = 1, γ = 0.01, and L = 80.
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Figure S2: Correlation between X1 and X8

as a function of the time delay τ for differ-
ent η+ with Km = η−/η+ held constant.
The correlations are nearly independent of
η+ for η+ > 10, but decrease for very small
η+. Other parameters were λ = 10.9, µ = 1,
γ = 0.01, and L = 80.

2 Parallel enzymatic network with different values of η+ and η− for each
species

We tested the correlation properties of the parallel 8-node network when binding and unbinding constants
of different species to the protease η± are different. Our simulations show that the correlation resonance
still occurs near the same value of λ ≈ µL/n (see Fig. S3,A), however the magnitudes of the correlation
peaks among different species vary significantly. This variability can be explained by the fact that species
with higher binding and lower unbinding rate are processed preferentially and more effectively than those
that have lower binding and higher unbinding rates because a higher fraction of proteases is bound to them
on average. Thus the queues of the former are shorter than of the latter. This is indeed confirmed by the
Fig. S3,B where the mean queue lengths 〈Qi〉 are plotted against the individual Michaelis constants in the
Briggs-Haldane form Ki = (µ + η−i )/η+

i . Queues with intermediate lengths are closest to criticality and
should have higher cross-correlation than very short or very long queues. Figure S3,C indeed shows a strong
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Figure S3: A. Maximum correlations rmax
1,j vs. λ in a parallel 8-node network where each protein has different values of η+

and η− given on the right together with corresponding Ki = (µ + η−i )/η+i . Correlation resonance is still observed near the
balance point λ = µL/n, but species with lower Ki have lower cross-correlations near the peak. B. Mean queue lengths of
different species 〈Qi〉 as functions of Ki. C. Maximum cross-correlation coefficients between different species versus the product
of their mean queue lengths for different λ.

correlation between the mean queue lengths and the cross-correlation coefficients with the maximum near
〈Qi〉 ≈ 100.

3 Correlation resonance in a branching network with multiple cofactors

To further test the generality of the correlation resonance phenomenon, we simulated a more complex branch-
ing network (Fig. S4A). Rather than a single cofactor, reactions in this network required one of three different
cofactors C1, C2, C3 which are assumed to be produced with rates λC1

, λC2
, λC3

, respectively. Furthermore,
each reaction Xi +Ck → Xj had its own rate µij . Despite these changes, the network still exhibited strong
correlation resonance for the subset of species that required the limiting cofactor for processing.
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Figure S4: Correlation resonance in a branching net-
work with multiple shared cofactors. (A) A branching
network using three different shared cofactors. In this
model, each reaction has its own rate rather than all rates
being the same. (B) The correlation between a number
of species peaks for a particular value of λ6 with con-
stant λ1 = 10. For the parameters used, the cofactor C1

is limiting, so all species processed by enzymes requiring
C1, viz. X1, X3, X4, and X6, are highly correlated near
the balance point. Simulation parameters are γ = 0.01,
λC1

= λC2
= λC3

= 40, η+ = 1000, η− = 0, µ12 = 1,
µ23 = 2, µ24 = 1, µ35 = 3, µ4∅ = 1, µ5∅ = 2, µ67 = 2,
µ78 = 3, and µ8∅ = 2.

4 Correlation length in a serial enzymatic network

Because the distance between enzymatic “nodes” in the serial network is a discrete variable, we use linear
interpolation to define the position along the chain where the maximum correlations drops to r0 = 0.5. For
this, suppose rmax

1,j+1 ≤ r0 < rmax
1,j . Then the correlation length is defined as

Lc = j − 1 +
rmax
1,j − r0

rmax
1,j − rmax

1,j+1

(S1)

When the maximum correlation between the first species and the last species exceeds the threshold (i.e.,
rmax
1,n > r0 = 0.5), the correlation length is assumed to have the maximum possible value n− 1.

5 Susceptibility of a serial enzymatic network

We computed the susceptibility of the enzymatic cascade to external perturbations using a deterministic
model of an eight-species serial network, Eqs. (14)-(15) of the Main Text with L̄ fixed. We switched the
input from λ to λ+ ∆λ for a certain time and computed the changes in Q̄i. The susceptibility is defined as

Si = ∆Q̄iλ
Q̄i0∆λ

, where Q̄i0 is the stationary value of Q̄i at the input rate λ, and ∆Q̄i is the maximum change

of Q̄i from the baseline value Q̄i0 reached during or after the increase of λ. Similar to the cross-correlation
function, the susceptibility as a function of λ exhibits a peak-like shape. For very short pulses, the maximum
susceptibility occurs below the balance point. But for longer pulses and for a step function, the maximum
susceptibility is achieved very close to the balance point λ = 10 (figure S5).
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Figure S5: Susceptibility in a deterministic model of a serial
enzymatic network of eight species with fixed number of shared
enzymes as a function of λ. The value of λ was increased by
∆λ = 0.1 for time intervals of length 1, 5, 50, or ∞, and the
maximum changes in proteins Q̄1, Q̄8 were calculated. Param-
eters used in simulations were L = 80, γ = 0.01, Km = 0.1,
µ = 1.
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We also computed susceptibility for an adaptive serial network which is described by Eqs. (14)-(16)
of the Main Text. Figure S6A shows that the susceptibility becomes nearly independent of λ in analogy
with the cross-correlation functions. However, the absolute values of susceptibility become lower. As in
stochastic simulations of adaptive networks, for values of α that are small relative to γ, the enzyme synthesis
is weak, and the network remains overloaded even with adaptation. For very large α, the feedback is too
quick, and the response becomes weak. This produces a trade-off between robustness to changes in λ (due
to adaptation) and sensitivity to input signals, which results in an optimal value of adaptation rate α (see
Fig. S6B).
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Figure S6: Susceptibility in a deterministic model of an adaptive serial enzymatic network of eight species as a function of
λ with α = 0.05 (A) and as a function of α for λ = 10 (B). The value of λ was transiently increased by ∆λ = 0.1 for time
intervals of length 1, 10, or ∞, and the sensitivity was calculated as described. Parameters used in simulations were γ = 0.01,
Km = 0.1, µ = 1.

6 Steady-state distribution for a serial network with common enzymatic
processing

Here we obtain an analytical formula for the steady-state distribution of a Markov chain associated with the
serial network with shared enzymatic processing described by the reactions in Eq. 2 of the Main Text, under
the instant irreversible binding assumption (η+ = +∞, η− = 0) and in the absence of dilution (γ = 0).

For i = 1, . . . , n, Qbi (resp. Qui ) denotes the number of copies of protein Xi that are bound (resp.
unbound) to enzyme and L is the (fixed) total number of copies of the enzyme E, whether bound or
unbound. The (2n)-dimensional process Q = (Qu1 , Q

b
1, . . . , Q

u
n, Q

b
n) is a continuous-time Markov chain.

Under our assumptions, we will always have that the total number of bound copies of the proteins is no more
than L, i.e., Qb =

∑n
i=1Q

b
i ≤ L, and if Qb < L, then Qu = 0. For convenience, we denote the total number

of unbound copies of the proteins by Qu =
∑n
i=1Q

u
i and the total number of copies of all proteins, whether

bound or unbound, by Q = Qb +Qu. We let Q denote the state space for Q and q = (qu1 , q
b
1, . . . , q

u
n, q

b
n) will

denote a generic value in Q.
We assume that the system is underloaded, i.e., nλ < Lµ, so that the average load on the enzymatic

processing machinery is less than the average processing capacity. Under this assumption, the Markov chain
Q does not explode in finite time, and indeed it will have a unique steady-state distribution.
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The infinitesimal generator Γ for Q is given by the following for q̃,q ∈ Q:

Γ(q̃,q) =



λ if q̃ = q1,u− and qu1 > 0, or

if q̃ = q1,b− and qu = 0, qb1 > 0;

µ(qbi + 1{i 6=j})
(
quj +1{j 6=i+1}
qu+1{i=n}

)
if q̃ = qi,b,j,u for some i, j ∈ {1, . . . , n}, where

qbj > 0, qb = L and qui+1 > 0 if i < n;

µ(qbi + 1) if q̃ = qi,b,i+1 for some i ∈ {1, . . . , n}, where

qu = 0, and either i < n and qbi+1 > 0,

or i = n and qb < L;

0 for all other q̃ 6= q;

−(λ+ µqb) if q̃ = q.

The off-diagonal entries in Γ indicate the infinitesimal rates for all possible transitions from other states into
q. To describe these, let q = (qu1 , q

b
1, . . . , q

u
n, q

b
n) and qu =

∑n
i=1 q

u
i , qb =

∑n
i=1 q

b
i . The first case in the

description of Γ covers transitions associated with production of a new copy of protein X1. There are two
sub-cases to consider, corresponding to the possibilities for the system state q̃ just before the transition,
where in this state, either (i) all copies of the enzyme are bound to copies of the proteins, or (ii) at least
one copy of the enzyme is free. For the first sub-case, q1,u− denotes the modification of q obtained by
subtracting one from qu1 ; note that qu1 > 0 is required for this sub-case to be permissible. For the second
sub-case, under our instant binding assumption, a newly produced copy of the protein X1 will instantly bind
to a copy of the enzyme. For this, q1,b− denotes the modification of q obtained by subtracting one from qb1;
note that qb1 > 0 and qu = 0 are required for this sub-case to be permissible. The second and third cases
cover transitions due to completion of enzymatic processing of a bound copy of a protein Xi, production
of a new unbound copy of protein Xi+1 (if i < n) and instant binding of the freed copy of the enzyme to
a copy of some protein (provided there are unbound copies available), where the protein copy is chosen at
random from the pool of unbound copies of all of the proteins available just prior to the transition, unless
there are no such copies, in which case the enzyme copy binds to the newly produced copy of the protein (if
there is one). The second case covers such transitions when there is at least one unbound copy of a protein
immediately prior to the transition, and the third case covers transitions in which there are no unbound
copies of protein immediately prior to the transition. In the latter case, either a copy of protein Xi for i < n
completes its processing and produces a new copy of protein Xi+1 which instantly binds to the newly freed
copy of the enzyme, or a copy of protein Xn completes its processing and a copy of the enzyme becomes free
and the total number of proteins shrinks by one. In the second case, assuming qu > 0 or qu = 0, qb = L,
i = n, the state immediately prior to a transition in which a copy of protein Xi finishes being processed and
a copy of protein Xj becomes newly bound, is given by qi,b,j,u. This is obtained from q by adding one to qbi ,
then subtracting one from qui+1 if i < n, then adding one to quj , and finally, subtracting one from qbj . For this

transition to be possible, qui+1 > 0 is needed if i < n, and qbj > 0 is needed. For the transitions in the third

case, assuming qu = 0 and either i < n or i = n, qb < L, the state immediately prior to a transition, in which
a copy of protein Xi finishes being processed, and a copy of protein Xi+1 is produced and immediately binds
to enzyme (if i < n), is denoted by qi,b,i+1. This is obtained from q by adding one to qbi and subtracting
one from qbi+1 if i < n. The latter requires qbi+1 > 0.

We now describe the steady-state distribution for Q. For this, given q = (qu1 , q
b
1, . . . , q

u
n, q

b
n) ∈ Q,

qu =
∑n
i=1 q

u
i , qb =

∑n
i=1 q

b
i , and q = qu + qb, let

ϑ(q) = π(q)χq(q), (S2)

where

χq(q) =
qb!

qb1! · · · qbn!

qu!

qu1 ! · · · qun!

(
1

n

)q
(S3)

π(q) = c
(nλ)q∏q
l=1 φ(l)

, (S4)

5



for

φ(l) = min(l, L)µ, (S5)

c−1 =

∞∑
q=0

(nλ)q∏q
l=1 φ(l)

=

L−1∑
q=0

ζq

q!
+

ζL

L!(1− ρ)
, (S6)

and ζ = nλ
µ , ρ = nλ

Lµ < 1.

Remark. In the expressions above, x0 for x > 0, 0! and a product over an empty set of indices are all
defined to equal 1. Also, note that since enzymes will be bound whenever there are sufficiently many copies
of proteins to bind to, qb, qu can be recovered from q: qb = min(q, L) and qu = (q − L)+.

Theorem 6.1. Assuming nλ < Lµ, the probability distribution ϑ is the unique steady-state distribution for
Q. In other words, in steady-state, the distribution for Q is the same as that for the birth-death process
describing the total number of molecules in an L-server first-come-first-served queue with Poisson arrivals
at rate nλ, independent exponentially distributed service times with a mean of 1/µ, and, conditioned on
Q, the distribution of the protein types is as if each molecule in the system, whether bound or unbound,
independently chooses its type, where the probability that it chooses type i is 1

n , i = 1, . . . , n.

Remark. It turns out that the steady-state distribution for Q is the same as for the enzymatic processing
model in [4] when the different types of proteins there are all produced independently at rate λ and the
dilution parameter γ is set to zero. Our result is almost a special case of a result for multi-class queueing
networks described in Corollary 3.5 of Kelly [3]. However, the derivation in Kelly does not allow for immediate
feedback to a queue as we have here. One can think of our result as a formal “limit” of Kelly’s result for
a two-station queueing network, in which the first station is an enzymatic processing queue and the second
station is a quick service station that quickly returns a newly produced copy of protein to the enzymatic
processing queue. The “limit” is as this quick service time tends to zero. Alternatively, as suggested in
Exercise 5 on page 64 of Kelly [3], one can try to extend Kelly’s result to a single queue with immediate
feedback. That is what we do here. We note however, that for this to be true, it is important for the proof
that an enzyme does not immediately bind to the copy of protein that it just produced, unless there are no
other copies of protein to bind to. In other words, a newly produced copy of protein is not inserted into the
queue of waiting proteins until after the freed enzyme tries to select from the pool of waiting proteins. Only
if the pool is empty, does the enzyme bind to the protein just produced.

Proof. Since the Markov chain associated with Q is irreducible and does not explode in finite time, it suffices
to show that ϑ given by (S2) satisfies the following equation (see Theorems 3.5.3 and 3.5.5 of [6]):∑

q̃∈Q

ϑ(q̃)Γ(q̃,q) = 0 for all q ∈ Q. (S7)

We now verify this. In the following, in the first equality, for the sums over i and j, any term for which
qi,b,j,u or qi,b,i+1 is not in Q is considered to be zero. Also, indicator functions are suppressed when they
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are not needed, e.g., due to the factor multiplying them being zero. For any q ∈ Q,∑
q̃∈Q

ϑ(q̃)Γ(q̃,q)

= (ϑ(q1,u−)1{qu1 >0} + ϑ(q1,b−)1{qu=0,qb1>0})λ

+1{qu>0}

n∑
i=1

n∑
j=1

ϑ(qi,b,j,u)µ(qbi + 1{i6=j})

(
quj + 1{j 6=i+1}
qu + 1{i=n}

)

+1{qu=0,qb=L}µ

(
n−1∑
i=1

ϑ(qi,b,i+1)(qbi + 1)) +

n∑
j=1

ϑ(qn,b,j,u)(qbn + 1{j 6=n})

)

+1{qb<L}µ
n∑

i=1

ϑ(qi,b,i+1)(qbi + 1)

−ϑ(q)(λ+ µqb)

= λπ(q − 1)(χq−1(q1,u−)1{qu1 >0} + χq−1(q1,b−)1{qu=0,qb1>0})

+1{qu>0}
µπ(q)

qu

n−1∑
i=1

( ∑
j 6=i,i+1

1{qbj>0,qui+1>0}χq(qi,b,j,u)(qbi + 1)(quj + 1)

+1{qui+1>0}χq(qi,b,i,u)qbi (qui + 1) + 1{qbi+1>0}χq(qi,b,i+1,u)(qbi + 1)qui+1

)
+1{qu>0}

µπ(q + 1)

qu + 1

(∑
j 6=n

1{qbj>0}χq+1(qn,b,j,u)(qbn + 1)(quj + 1) + χq+1(qn,b,n,u)qbn(qun + 1)
)

+1{qu=0,qb=L}µπ(q)

n−1∑
i=1

1{qbi+1>0}χq(qi,b,i+1)(qbi + 1)

+1{qu=0,qb=L}µπ(q + 1)

(
n−1∑
j=1

1{qbj>0}χq+1(qn,b,j,u)(qbn + 1) + χq+1(qn,b,n,u)qbn

)

+1{qb<L}µ

(
π(q)

n−1∑
i=1

1{qbi+1>0}χq(qi,b,i+1)(qbi + 1) + π(q + 1)χq+1(qn,b,n+1)(qbn + 1)

)
−π(q)χq(q)(λ+ µqb)

= λπ(q − 1)χq(q)n

(
qu1
qu

1{qu1 >0} +
qb1
qb

1{qu=0,qb1>0}

)
+1{qu>0}

µπ(q)χq(q)

qu

n−1∑
i=1

( ∑
j 6=i,i+1

qbjq
u
i+1 + qui+1q

b
i + qbi+1q

u
i+1

)
+1{qu>0}

µπ(q + 1)χq(q)

n

(∑
j 6=n

qbj + qbn

)

+1{qu=0,qb=L}µχq(q)

(
π(q)

n−1∑
i=1

qbi+1 +
π(q + 1)

n

(
n−1∑
j=1

1{qbj>0}q
b
j + qbn

))

+1{qb<L}µχq(q)

(
π(q)

n−1∑
i=1

1{qbi+1>0}q
b
i+1 +

π(q + 1)

n
(qb + 1)

)
−π(q)χq(q)(λ+ µqb)
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= π(q)χq(q)φ(q)

(
qu1
qu

1{qu1 >0} +
qb1
qb

1{qu=0,qb1>0}

)
+1{qu>0}

µπ(q)χq(q)qb

qu

(
n−1∑
i=1

qui+1 +
λ

φ(q + 1)
qu
)

+1{qu=0,qb=L}µπ(q)χq(q)
(
qb − qb1 +

λ

φ(q + 1)
qb
)

+1{qb<L}µπ(q)χq(q)
(
qb − qb1 +

λ

φ(q + 1)
(qb + 1)

)
−π(q)χq(q)(λ+ µqb)

= µπ(q)χq(q)

(
L
qu1
qu

1{qu1 >0} + qb11{qu=0} + 1{qu>0}

(
L
qu − qu1
qu

+
λ

µ

)

+1{qu=0,qb=L}

(
qb − qb1 +

λ

µ

)
+ 1{qb<L}

(
qb − qb1 +

λ

µ

)
−
(λ
µ

+ qb
))

= 0.

In the above derivation, we have used the forms of π and χ in deriving the string of equalities. In particular,

we have used the fact that π(q+1)
n = λ

φ(q+1)π(q) and that φ(q + 1) = Lµ when qu > 0 or qu = 0, qb = L, and

φ(q + 1) = (qb + 1)µ when qb < L.

The preceding result leads to the following formulas for the steady-state moments of the total number of
copies of protein i, Qi = Qui + Qbi , in terms of those for the total number of copies of all proteins, Q. Here
overline denotes the mean value, SCV indicates the squared coefficient of variation (the variance divided by
the square of the mean), and V ar denotes the variance.

Corollary 6.1. Suppose that the assumptions of Theorem 6.1 hold. Then, in steady-state we have the
following for i = 1, . . . , n,

Qi =
Q

n
, (S8)

SCV (Qi) = SCV (Q)− 1

Q
+

1

Qi
, (S9)

and the steady-state correlation between Qi and Qj for j 6= i is given by

rij(τ = 0) =
QiQj −QiQj√
V ar(Qi)V ar(Qj)

=
F − 1

F − 1 + n
, (S10)

where F = V ar(Q)/Q is the steady-state Fano factor for Q.

Proof. From Theorem 6.1, we know that conditioned on Q = q, since qb = min(q, L) and qu = (q − L)+,
Qbi , i = 1, . . . , n, have a multinomial distribution with parameters (min(q, L); p1, . . . , pn), independent of
Qui , i = 1, . . . , n, which have a multinomial distribution with parameters ((q − L)+; p1, . . . , pn), and hence
Qi, i = 1, . . . , n have a multinomial distribution with parameters (q; p1, . . . , pn), where pi = 1

n for i = 1, . . . , n.
The formulas for the moments and correlations of the Qi, expressed in terms of the moments of Q, then
follow from computations using the multinomial distributions. These computations are very similar to those
performed in [4]. We leave the details to the reader.

Formulas for the steady-state moments of Q, which are the steady-state moments for a one-dimensional
birth-death process that describes the total number of jobs in an M/M/L queue with arrival rate nλ and
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service rate µ, can be readily computed. In particular, the following formula for the steady-state mean for Q
is from (2.29) in [2]. Here ζ = nλ

µ , ρ = nλ
Lµ and c is the normalizing constant for the steady-state distribution

of Q, as before.

Q = ζ + c
ζLρ

L!(1− ρ)2
,

and the second moment can be obtained using the sum of the geometric series of powers of ρ and derivatives
thereof as follows:

Q2 = c

{
L−1∑
q=1

qζq

(q − 1)!
+
ζL

L!

(
2ρ2

(1− ρ)3
+

(2L+ 1)ρ

(1− ρ)2
+

L2

1− ρ

)}
.

7 Correlations in a serial enzymatic network below balance

We approximate the underloaded regime by the situation where the number of enzymes is truly unlimited
and they bind their substrates infinitely quickly (the strong binding approximation). In this situation, all
proteins are always bound to enzymes and the master equation is

d

dt
P (q, t) = λ[P (q1, t)− P (q, t)]

+µ

n∑
i=1

[(qi + 1)P (qii+1, t)− qiP (q, t)] (S11)

+γ

n∑
i=1

[(qi + 1)P (qi, t)− qiP (q, t)]

where q stands for a vector of numbers of substrates (q1, ..., qn). The subscript i in qi or qji indicates that

the i-th component of q (if i ∈ {1, ..., n}) is replaced by qi − 1, and the superscript j in qj or qji means that
qj (if j ∈ {1, ..., n}) is replaced by qj + 1. For example, q1

2 denotes the vector (q1 + 1, q2 − 1, q3, ..., qn).
From this master equation, it is straightforward to derive expressions for the steady-state means Qi and

same-time covariances cov(Qi, Qj) = QiQj −QiQj ,

Qi =
αµi−1

(µ+ γ)i
(S12)

cov(Qi, Qj) = Qiδi,j (S13)

where δi,j is the Kronecker symbol.
For a system of only zero- and first-order Markovian reactions, the regression theorem dictates that the

time-delayed covariance is given by (see [1])

cov(Q(t),Q(t+ τ)) = eBτ Q̃(t)Q̃T (t) (S14)

where B is the Jacobian of the corresponding linear system for the means, Q = −B−1A, and Q̃ = Q−Q.
For this system the Jacobian B has the bi-diagonal form

B =


−µ− γ 0 0 . . . 0
µ −µ− γ 0 . . . 0
0 µ −µ− γ . . . 0
...

...
...

. . .
...

0 0 0 µ −µ− γ

 (S15)
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Since B is a sum of commuting diagonal matrix B0 with elements −(µ+ γ)δi,j and the lower shift matrix L
with elements µδi,j+1, the matrix exponential exp(Bτ) can be written as

exp(Bτ) = e−(µ+γ)τ

(
I + Lτ +

1

2
L2τ2 + . . .+

1

(n− 1)!
Ln−1τn−1

)
(S16)

Taking advantage of the properties of powers of shift matrices, we can easily compute the covariance

cov(Q1(t), Qj(t+ τ)) =
µj−1τ j−1

(j − 1)!

α

µ+ γ
e−(µ+γ)τ (S17)

Then the expression for the correlation coefficient between Q1(t) and Qj(t+ τ) is

r1j(τ) =
[µ(µ+ γ)]

j−1
2 τ j−1

(j − 1)!
e−(µ+γ)τ . (S18)

8 Factorized steady-state distributions for a parallel network with adaptive
enzymatic processing

Here we establish a factorization result for the steady-state distribution of the (2n+ 1)-dimensional Markov
chain associated with the parallel network with shared enzymatic processing and adaptation described by
Eq. 8 in the Main Text. Under irreversible, instant binding (η− = 0, η+ = +∞), when the adaptation rate ν
depends only on the sum of all protein counts, this means that the steady-state correlation coefficient rij (for
τ = 0) can be computed from the steady-state distribution for the two-dimensional Markov chain associated
with the total number of protein copies and the total number of copies of the enzyme.

For i = 1, . . . , n, we let Qbi (resp. Qui ) denote the number of copies of protein Xi that are bound (resp.
unbound) to enzyme and let L denote the total number of copies of the enzyme E, whether bound or unbound.
Note that L is no longer constant, it is a stochastic process. Let Qb =

∑n
i=1Q

b
i and Qu =

∑n
i=1Q

u
i , the

total number of copies of bound and unbound protein, respectively, and let Q = Qb +Qu, the total number
of copies of all proteins, whether bound or unbound. Note that since L denotes the total number of copies
of the enzyme (bound plus unbound), we will always have that the total number of bound copies of proteins
is no more than L, i.e., Qb ≤ L. We assume that ν is a measurable function of (Qu, Qb, L), in particular,
this covers the case where ν just depends on Q. The (2n+ 1)-dimensional process

Z = (Qu1 , Q
b
1, . . . , Q

u
n, Q

b
n, L)

is a continuous-time Markov chain. We let Z denote the state space for Z and z = (qu1 , q
b
1, . . . , q

u
n, q

b
n, `) will

denote a generic value in Z. In addition, because of our assumptions that η+, η−, µ and γ do not depend on
i, and that ν depends only on (Qu, Qb, L), we have that the three-dimensional process

W = (Qu, Qb, L)

is a continuous-time Markov chain. We denote the state space for W by W and a generic element of this
space by w = (qu, qb, `).

We assume that the function ν is such that Z is irreducible and does not explode in finite time and is
such that W has a steady-state distribution. Then Z has a unique steady-state distribution. We will show
that the steady-state distribution for Z can be expressed in terms of that for W.
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The infinitesimal generator for Z is given by the following for z̃, z ∈ Z:

Γ(z̃, z) =



λi if z̃ = zi,u− for some i ∈ {1, . . . , n} and qui > 0,

γ(qui + 1) if z̃ = zi,u+ for some i ∈ {1, . . . , n},
η+(`− qb + 1)(qui + 1) if z̃ = zi,u+,b− for some i ∈ {1, . . . , n} and qbi > 0,

η−(qbi + 1) if z̃ = zi,u−,b+ for some i ∈ {1, . . . , n} and qui > 0,

µ(qbi + 1) if z̃ = zi,b+ for some i ∈ {1, . . . , n},
γ(qbi + 1) if z̃ = zi,b+,`+ for some i ∈ {1, . . . , n},
ν(qu, qb, `− 1) if z̃ = z`− and ` > 0,

γ(`− qb + 1) if z̃ = z`+,

0 for all other z̃ 6= z,

−(Λ + γ(qu + `)

+µqb + η+qu(`− qb)
+η−qb + ν(qu, qb, `)) if z̃ = z.

The off-diagonal entries in Γ indicate the infinitesimal rates for all possible transitions from other states into
z. To describe these, let z = (q, `) for q = (qu1 , q

b
1, . . . , q

u
n, q

b
n), and let qu =

∑n
i=1 q

u
i , qb =

∑n
i=1 q

b
i . The

first case in the description of Γ covers transitions associated with production of a new copy of a protein.
For this, zi,u− denotes the modification of z obtained by subtracting one from qui . Note that qui > 0 is
needed for this transition to be possible. The second case covers transitions due to dilution of an unbound
copy of a protein. For this, zi,u+ denotes the modification of z obtained by adding one to qui . The third
case covers transitions due to binding of an unbound copy of a protein to an unbound copy of the enzyme.
For this, zi,u+,b− denotes the modification of z obtained by adding one to qui and subtracting one from qbi ,
and ` − qb + 1 is the number of unbound copies of the enzyme associated with zi,u+,b−. The fourth case
covers transitions due to unbinding of a copy of a protein bound to a copy of the enzyme. For this, zi,u−,b+

denotes the modification of z obtained by subtracting one from qui and adding one to qbi . The fifth case covers
transitions due to completion of enzymatic degradation of a bound copy of a protein. For this, zi,b+ denotes
the modification of z obtained by adding one to qbi . The sixth case covers transitions due to dilution of a
copy of a protein bound to a copy of the enzyme. For this, zi,b+,`+ denotes the modification of z obtained
by adding one to qbi and to `. The seventh case covers a transition due to production of a new copy of the
enzyme. For this, z`− denotes the modification of z obtained by subtracting one from `. The eighth case
covers a transition due to dilution of an unbound copy of the enzyme. For this, z`+ denotes the modification
of z obtained by adding one to `.

The infinitesimal generator for W is given by the following for w̃,w ∈ W:

∆(w̃,w) =



Λ if w̃ = wu− and qu > 0,

γ(qu + 1) if w̃ = wu+,

η+(`− qb + 1)(qu + 1) if w̃ = wu+,b− and qb > 0,

η−(qb + 1) if w̃ = wu−,b+ and qu > 0,

µ(qb + 1) if w̃ = wb+,

γ(qb + 1) if w̃ = wb+,`+,

ν(qu, qb, `− 1) if w̃ = w`− and ` > 0,

γ(`− qb + 1) if w̃ = w`+,

0 for all other w̃ 6= w,

− (Λ + γ(qu + `)

+µqb + η+qu(`− qb)
+η−qb + ν(qu, qb, `)

)
if w̃ = w.

(S19)

Here Λ =
∑n
i=1 λi. The cases for ∆(w̃,w), w̃ 6= w, correspond to the possible transitions into w. Writing
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w = (qu, qb, `), these can be described as follows. The first case corresponds to a transition due to production
of a new copy of a protein. For this, wu− denotes the modification of w obtained by subtracting one from
qu. The second, sixth and eighth cases correspond to transitions due to dilution of an unbound copy of a
protein, a protein-enzyme complex or an unbound copy of the enzyme, respectively. For this, wu+ denotes
the modification of w obtained by adding one to qu, wb+,`+ denotes the modification of w obtained by
adding one to qb and to `, and w`+ denotes the modification of w obtained by adding one to `. The third
and fourth cases correspond to transitions due to binding and unbinding of a copy of a protein to a copy of
the enzyme. For this, wu+,b− denotes the modification of w obtained by adding one to qu and subtracting
one from qb and wu−,b+ denotes the modification obtained by subtracting one from qu and adding one to qb.
The fifth case corresponds to a transition due to the completion of enzymatic degradation of a bound copy
of a protein. For this, wb+ denotes the modification of w obtained by adding one to qb. The seventh case
covers a transition due to production of a new copy of the enzyme. For this, w`− denotes the modification
of w obtained by subtracting one from `.

For i = 1, . . . , n, let

pi =
λi
Λ
.

For each z = (q, `) ∈ Z, where q = (qu1 , q
b
1, . . . , q

u
n, q

b
n), let w = (qu, qb, `) where qu =

∑n
i=1 q

u
i , qb =

∑n
i=1 q

b
i ,

and let

χw(q) =
qu!

qu1 ! · · · qun!

qb!

qb1! · · · qbn!

n∏
i=1

p
qui +qbi
i .

Theorem 8.1. Assume that π is a steady-state distribution for W. Then the steady-state distribution for
Z has the following factorized form:

ζ(z) = π(w)χw(q), z ∈ Z. (S20)

In other words, in steady-state, conditioned on the value of W, the distribution of the protein types is as if
each protein molecule in the system, whether bound or unbound, independently chooses its type, where the
probability that it chooses type i is pi, i = 1, . . . , n.

Proof. Since we assumed that Z is irreducible and does not explode in finite time, it suffices to show that ζ
given by (S20) satisfies the following:∑

z̃∈Z

ζ(z̃)Γ(z̃, z) = 0 for all z ∈ Z.

We now verify this. In the following, qi,u− denotes the modification of q obtained by subtracting one from
qui , qi,u+ denotes the modification of q obtained by adding one to qui , qi,u+,b− denotes the modification of q
obtained by adding one to qui and subtracting one from qbi , q

i,u−,b+ denotes the modification of q obtained
by subtracting one from qui and adding one to qbi , q

i,b+ denotes the modification of q obtained by adding
one to qbi .
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For any z ∈ Z,∑
z̃∈Z

ζ(z̃)Γ(z̃, z)

=

n∑
i=1

π(wu−)χwu−(qi,u−)1{qui >0}λi +

n∑
i=1

π(wu+)χwu+(qi,u+)γ(qui + 1)

+

n∑
i=1

π(wu+,b−)χwu+,b−(qi,u+,b−)η+(`− qb + 1)(qui + 1)1{qbi>0}

+

n∑
i=1

π(wu−,b+)χwu−,b+(qi,u−,b+)η−(qbi + 1)1{qui >0}

+

n∑
i=1

π(wb+)χwb+(qi,b+)µ(qbi + 1) +

n∑
i=1

π(wb+,`+)χwb+,`+(qi,b+)γ(qbi + 1)

+π(w`−)χw(q)ν(qu, qb, `− 1)1{`>0} + π(w`+)χw(q)γ(`− qb + 1)

−π(w)χw(q)(Λ + γ(qu + `) + µqb + η+qu(`− qb) + η−qb + ν(qu, qb, `))

= χw(q)

[
n∑
i=1

π(wu−)
qui
qupi

λi1{qui >0} +

n∑
i=1

π(wu+)pi(q
u + 1)γ

+

n∑
i=1

π(wu+,b−)
(qu + 1)qbi

qb
η+(`− qb + 1)1{qbi>0}

+

n∑
i=1

π(wu−,b+)
(qb + 1)qui

qu
η−1{qui >0}

+

n∑
i=1

π(wb+)(qb + 1)piµ+

n∑
i=1

π(wb+,`+)(qb + 1)piγ

+π(w`−)ν(qu, qb, `− 1)1{`>0} + π(w`+)γ(`− qb + 1)

−π(w)(Λ + γ(qu + `) + µqb + η+qu(`− qb) + η−qb + ν(qu, qb, `))
]

= χw(q)
[
π(wu−)Λ1{qu>0} + π(wu+)(qu + 1)γ

+π(wu+,b−)(qu + 1)η+(`− qb + 1)1{qb>0}

+π(wu−,b+)(qb + 1)η−1{qu>0}

+π(wb+)(qb + 1)µ+ π(wb+,`+)(qb + 1)γ

+π(w`−)ν(qu, qb, `− 1)1{`>0} + π(w`+)γ(`− qb + 1)

−π(w)(Λ + γ(qu + `) + µqb + η+qu(`− qb) + η−qb + ν(qu, qb, `))
]

= χw(q)
∑
w̃∈W

π(w̃)∆(w̃,w) = 0,

where the last equality holds because π is a steady-state distribution for W.

Under the assumption of Theorem 8.1, we have the following steady-state moment formulas. Let Qi =
Qui +Qbi for i = 1, . . . , n. Then Q =

∑n
i=1Qi, the total number of copies of proteins in the system.

Corollary 8.1. In steady-state, for i = 1, . . . , n,

Qi = piQ, (S21)

SCV (Qi) = SCV (Q)− 1

Q
+

1

Qi
, (S22)
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and the correlation between Qi and Qj for j 6= i is given by

rij(τ = 0) =
QiQj −QiQj√
V ar(Qi)V ar(Qj)

=
F − 1

(F − 1 + 1
pi

)1/2(F − 1 + 1
pj

)1/2
, (S23)

where F = V ar(Q)/Q is the steady-state Fano factor for Q.

Proof. From Theorem 8.1, in steady-state, conditioned on W = (Qu, Qb, L) = (qu, qb, `), we have that
(Qui , i = 1, . . . , n) has a multinomial distribution with parameters (qu; p1, . . . , pn), independent of (Qbi , i =
1, . . . , n) which has a multinomial distribution with parameters (qb; p1, . . . , pn), and hence (Qi, i = 1, . . . , n)
has a multinomial distribution with parameters (qu + qb; p1, . . . , pn). The formulas for the moments and
correlations then follow from computations using these multinomial distributions. These computations are
similar to those performed in [4]. We leave the details to the reader.

Remarks.
1. Note that in order to compute the steady-state Fano factor for Q, one needs to know the steady-state
distribution of the three-dimensional Markov chain W = (Qu, Qb, L). However, the dimension can be reduced
from three to two, by assuming irreversible, instant binding (η− = 0, η+ = +∞) and that ν depends only on
Q. Then (Q,L) is a two-dimensional Markov chain.
2. The reactions in Eq. 3 of the Main Text are nearly the same as those in Eq. 6 of the Main Text when
the enzyme E is replaced by the cofactor C, ν = λC and γC = γ. The only difference is that XiC degrades
to nothing, whereas XiE degrades to E. Indeed, with a very slight change to the proof of Theorem 8.1,
one can show that the factorization result of Theorem 8 and Corollary 8.1 hold when Z is the Markov chain
associated with Eq. 3 of the Main Text. The only difference in the proof is that the infinitesimal generator
for Z associated with Eq. 3 of the Main Text has zi,b+,`+ in place of zi,b+ in the fifth line of the description
of Γ, and for the infinitesimal generator of W associated with Eq. 3, in the fifth line of the description of
∆, wb+ is replaced with wb+,`+.
3. The result of Theorem 8.1 can be generalized to time-dependent distributions in a similar manner to
that in [5] to yield the following: if Z is initialized with a distribution of factorized form (i.e., conditioned
on W, the types of the proteins are distributed as if each protein molecule in the system chooses its type
independently of the other protein molecules and such that it is of type i with probability pi, i = 1, . . . , n),
then the distribution of Z at time t also is of factorized form.

9 Adaptive parallel queueing network with ν = αQu
1

We simulated an adaptive parallel enzymatic network with two species where the production rate of the
enzyme was proportional to only the unbound molecules of one species. This network exhibited strong
correlations for a wide range of λ values and for a large range of the proportionality constant α (Fig. S7).

α = 10−1 α = 10−2 α = 10−3 α = 10−4 α = 10−5

0

5

10

15

20

0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
λ1

λ 2

0.00

0.25

0.50

0.75

1.00

r1,2 ( τ = 0 ) 

Figure S7: Adaptive parallel network with ν = αQu
1 (unbound X1 only). In the range 10−4 < α < 10−2, adaptation

generates strong correlations for nearly all combinations of input rates λ1 and λ2. This includes combinations for which λ1
is an order of magnitude greater or smaller than λ2. Other parameters were µ = 1, η+ = 1000, η− = 0, γ = 0.01
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10 Adaptive serial queueing network with ν = αQ1

We simulated a serial enzymatic adaptive queueing network where production rate of the enzyme was pro-
portional to only one of the proteins. This network also exhibited strong correlations for a wide range of λ
values (Fig. S8).
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Figure S8: Maximal correlations for an adaptive serial
enzymatic network with ν = αQ1. In this network the
synthesis rate of the enzyme is proportional to the total
(enzyme-bound and unbound) number of X1 molecules.
Adaptation generates strong correlations for all values of
the input rate λ shown without dilution (left) and with
dilution (right). Parameters not shown are µ = 1, η+ =
1000, η− = 0, and the dilution rate for enzymes in both
cases is 0.01.

11 Adaptive serial network with ν = ν0 + αQ8

Next we simulated an adaptive serial network with the enzyme synthesized with the rate ν proportional to
the amount of total (unbound and enzyme-bound) X8. In this network, it is possible for enzyme production
to permanently cease if enzyme levels and levels of Q8 are both zero at the same time. To avoid this scenario,
we added a small basal level of enzyme production, ν0 = 0.1, which contributes a mean of ν0/γ = 10 enzymes.
The number of enzymes required for adaptation is closer to 80, so this effect is minor. For this network, we
again saw adaptation to the critical state. However, the range of usable α values is much narrower (Fig. S9).
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Figure S9: Adaptive serial network with ν = ν0 + αQ8. (a) Maximum correlations between Q1 and Qi as a function of λ
for different values of the feedback parameter α. For α near 0.02-0.03, correlations between all species are high. (b) Time
dependence of correlations for different α with λ = 12. Negative correlations indicate oscillations of a frequency dependent
on α. Other parameter values were µ = 1, η+ = 1000, η− = 0, γ = 0.01, ν0 = 0.01.

12 Serial network adapting to unbound proteins

We also simulated an adaptive serial network with enzyme synthesis rate proportional only to unbound
protein (i.e. ν = α

∑
iQ

u
i ). Figure S10 illustrates that this network shows very similar behavior to the
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network with rate proportional to total protein described in the Main Text.
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Figure S10: Adaptive serial network with enzyme syn-
thesis proportional to total unbound protein. (A) Max-
imum correlations between the first species and other
species for different values of α when λ = 15. (B) Max-
imum correlations between the first species and other
species for different values of λ when α = 0.01. (C) Time-
dependence of correlations for different values of α with
λ = 15. Oscillations increase in frequency as alpha is in-
creased. Parameters for all simulations were γ = 0.01,
µ = 1, η+ = 1000, and η− = 0.

13 Power spectra of species levels

We computed the power spectral densities of species levels in serial networks. In the constant-enzyme case,
there is a large DC component above balance (corresponding to the large nonzero mean of species levels in
this regime) and a low DC component below balance. All three cases display similar high frequency power
spectra (figure S11).

In order to compare the adaptive case to the non-adaptive case, we modified the non-adaptive network.
Enzymes E were produced at a rate λE and diluted with other species at the rate γ, giving a mean number
of enzymes L̄ = λE/γ. For L̄ = 80, this network had a maximum correlation at λ = 11.5. We then simulated
an adaptive network with λ = 11.5 for various values of the feedback parameter α and computed power
spectra (figure S12). We observed apparent amplification of very low frequencies and attenuation of slightly
higher frequencies in the adaptive power spectrum, consistent with the oscillations observed in correlations
of the adaptive system.
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Figure S11: Power spectra in a non-adaptive serial net-
works below, at, and above balance (λ = 7, 10.9, 15, re-
spectively). The DC components increase as balance is
reached and surpassed, corresponding to the increase in
mean species levels. All cases display similar high fre-
quency power spectra. The spectra were estimated using
Welch’s method. Parameters were L = 80, γ = 0.01,
µ = 1, η+ = 1000, and η− = 0.
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Figure S12: Power spectra in non-adaptive (with stochastic levels of enzyme, see text) and adaptive networks.
Adaptive networks for four different values of α are shown; the non-adaptive spectrum is repeated on each plot for
reference. The spectra were estimated using Welch’s method. Parameters were λ = 11.5, λE = 0.8, γ = 0.01, µ = 1,
η+ = 1000, and η− = 0.
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