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Abstract

Motivation Despite RNA-seq reads provide quality scores that represent the probability of calling a correct
base, these values are not probabilistically integrated in most alignment algorithms. Based on the quality
scores of the reads, we propose to calculate a lower bound of the probability of alignment of any fast
alignment algorithm that generates SAM files. This bound is called Fast Bayesian Bound (FBB) and serves
as a canonical reference to compare alignment results across different algorithms. This Bayesian Bound
intends to provide additional support to the current state-of-the-art aligners, not to replace them.
Results We propose a feasible Bayesian bound that uses quality scores of the reads to align them to a
genome of reference. Two theorems are provided to efficiently calculate the Bayesian bound that under
some conditions becomes the equality. The algorithm reads the SAM files generated by the alignment
algorithms using multiple command option values. The program options are mapped into the FBB reference
values, and all the aligners can be compared respect to the same accuracy values provided by the FBB.
Stranded paired read RNA-seq data was used for evaluation purposes. The errors of the alignments can
be calculated based on the information contained in the distance between the pairs given by Theorem 2,
and the alignments to the incorrect strand. Most of the algorithms (Bowtie, Bowtie 2, SHRiMP2, Soap 2,
Novoalign) provide similar results with subtle variations.
Availability: Current version of the FBB software provided at https://bitbucket.org/irenerodriguez/fbb.
Contact: rhuerta@ucsd.edu

1 Introduction
Goal. Quality scores of next-generation sequencing (NGS) reads are not
usually integrated in the alignment algorithms. In some cases, if the quality
scores of the reads are low the whole read may be dropped. In (Li et al.,
2008), the quality scores are summed over the mismatches, bypassing
probability rules and ignoring the quality of the “correct” matches. These
simplifications are a compromise between processing speed and reasonable
theoretical approximations. Our goal is to provide theoretical basis for the
fast estimation of the posterior probability of an alignment given a read
and a genome that can be used to fairly compare NGS aligners.

On fast aligners. Most of the aligners typically rely on seed-and-extend
algorithms (Fonseca et al., 2012; Altschul et al., 1997; Langmead et al.,
2009; Li and Durbin, 2009). A NGS read is aligned by first finding in the
reference genome a short token of the sequence and then extending the
alignment to the rest of the sequence. In general, these algorithms first
find the alignments with the lowest mismatch score and then they use the
quality scores in the mismatching bases to provide the mapping with a
quality score. Aligners such as MAQ (Li et al., 2008), Bowtie (Langmead
et al., 2009) or RMAP (Smith et al., 2008) are implementations of this
approach. A different strategy is proposed by the Slider algorithm (Malhis
et al., 2009). It uses the prb files containing the quality scores for every base
in every position in the read. Slider creates for every read a list of possible
candidate sequences based on the prb files. The number of candidate reads
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is limited to a given minimal probability (20%) , but then the quality scores
are not used for alignment purposes.
Aligner Comparisons. Given the large variety of aligners, there is a growing
body of research comparing aligners. These approaches can be divided
into three groups according to the type of data used for the comparison:
simulated data (Břinda et al., 2016; Caboche et al., 2014; Engström et al.,
2013; Giese et al., 2014), spike-in data (Minoche et al., 2011), or real/non-
simulated data (Holtgrewe et al., 2011; Kumar et al., 2015). Simulated data
adds uncontrolled sources of errors, which makes comparisons unreliable
due the additional layer of uncertainty (Giese et al., 2014). In this work,
we adopt a more pragmatic approach in line with previous methods such
as RABEMA (Holtgrewe et al., 2011) or CADBURE (Kumar et al., 2015),
which do not need synthetic data or spike-in experiments. RABEMA
provides a gold standard for the read mapping problem that is based on
the Hamming and Levenshtein distances; however, the incorporation of
mate pair information and quality values are pointed out in (Holtgrewe
et al., 2011) as directions of further work. CADBURE compares aligners
in pairs, and then analyzes the relative reliability and consistency with
each other. Our suggestion is to compare aligners directly using RNA-seq
reads using a natural metric based on the estimation of a Bayesian Bound.
This work is also related to assembly quality control approaches based
on Bayesian statistics and quality scores. On the one hand, Detonate (Li
et al., 2014) is a software package that implements model-based score
methods for evaluating assemblies when the ground truth is unknown. The
idea behind Detonate and FBB is similar. Detonate intends to compare
several transcriptome assemblies of the same set of reads by considering the
posterior probability of the assembly given the reads, and FBB maximizes
the posterior probability of a position in the genome given the reads.
However, Detonate’s probabilistic model is different from the one proposed
in this work as it has to account for assembly-specific problems, and it
does not explicitly incorporates quality scores. On the other hand, ALE
(Assembly Likelihood Evaluation) (Clark et al., 2013) is an assembly
quality control approach that also calculates the likelihood of observing
a specific assembly given the reads, and it obtains the contribution to
this likelihood from each position in the assembly. ALE’s score is used
to compare different assemblers, but not as an objective function itself.
While ALE’s score is obtained for the assembly position and insert size
for a given read, FBB optimizes the posterior probability with respect to
the genome position and insert size to provide the optimal score.
Why a Bayesian Bound. The posterior probability of an alignment at
position i of the genome g of a NGS read r, or Pg(i|r), can be directly
estimated by using the Bayes Theorem as Pg(r|i)Pg(i)/P (r). The
estimation of observing a read r given that the originating position is i

requires the quality scores in the FASTQ files and non-trivial assumptions
in the generation of the read from the genomic location. To speed up the
calculation instead of fully estimating Pg(i|r), we propose to calculate
a bound of the posterior probability. We call this bound Fast Bayesian
Bound (FBB) because it intends to be calculated fast. This bound also
allows aligning the reads using a selected threshold. If the FBB values are
used for alignment purposes, we call it Fast Bayesian Bound Alignment
(FBBA) algorithm and mappings are obtained as those maximizing the
FBB value for each read.
On the results. The FBB estimate uses the quality scores to provide
a bounded probability of having a correct output of the multi-valued
function that will be used to be mapped against the genome of reference.
We propose two Theorems, that provide two alignment bounds of the
posterior probability for single-end and paired-end reads that may contain
mismatches. Additionally, Lemma 3 extends these bounds for reads that
may include mismatches and indels. Computational costs are simplified
by avoiding the calculation of the normalization of the probability of
the short reads because this is a common factor to all genome positions
for a given experiment. The FBB’s implementation reads the SAM files

generated by any alignment algorithm and provides the average FBB
values for all the reads. Those average values are then used to compare
all the alignment algorithms in the same reference framework. We then
compare the alignment results for several non-spliced aligners, namely:
Bowtie (Langmead et al., 2009), Bowtie2 (Langmead and Salzberg, 2012),
BWA-MEM (Li, 2013), Novoalign (http://www.novocraft.com),
Segemehl (Hoffmann et al., 2009), SHRiMP2 (Rumble et al., 2009), and
Soap2 (Li et al., 2009). Three organisms are considered: Saccharomyces
cerevisiae, Mus Musculus and E. Coli. In real and simulated data, BWA-
MEM and Segemehl produce different qualitative results than the others
and tend to underperform. All the other methods perform very similarly.

2 Methods

2.1 Problem definition

Given a genome, g, containingN base pairs and a NGS read, r, containing
J = |r| base pairs, we want to calculate the probability of the position i

of the short read r in genome g; or P (i|r,g). The posterior probability,
P (i|r,g), can be used by an aligner algorithm to decide whether (1) r
aligns to g or not. The aligner requires to have an arbitrary threshold θ to
provide an alignment answer or not; (2) if the read aligns to the genome,
the algorithm yields the optimal alignment location i in the genome. If
the location i matches the true location, then we obtain a “true positive”
answer.

In this framework, the alignment algorithms can have the following
main sources of errors according to (Li et al., 2008): (i) the error that an
aligned read does not come from the reference genome (a “false positive”
answer also called type-1 mapping error), (ii) the error associated with
an unaligned read whose true position in the genome/chromosome is
missed by the alignment algorithm (a “false negative” answer), and (iii) the
error that the alignment is not the true one (“false positive” answer). The
estimation of error (i) is out of the scope of this paper because that would
require to calculate P (i|r,gj) where j runs over all possible samples of
the genomes present in the experiment (Reinert et al., 2015).

2.2 Mapping the genome

Given a genome, g, containing N base pairs, we can map any K

consecutive bases of g into a single positive integer s. The function
that maps K consecutive bases into the positive integers is f :

(gi, gi+1, . . . , gi+K−1) → s. For a N -size genome we map at most
N − K + 1 segments into words, and we can simplify the notation
as f(i) = s, where i denotes the position of the beginning of the K

consecutive bases and s is a positive integer in the interval [0, 264].
Under this framework, let H(·) be a multi-valued function from

a positive integer s, which represents a genome encoded sequence, to
a genome position i. Since there can be multiple repetitions of short
sequences in the genome, let us define the set I(s) as the set of positions
that contain all the genome locations of the same sequence s. Formally,

I(s) = {i/H(s) = i} . (1)

That is, H(s) = i ⇒ f(gi, gi+1, . . . , gi+K−1) = s. The number of
elements in this set is larger or equal than 0, i.e., |I(s)| ≥ 0.

2.3 Mapping a NGS read to the genome using
multi-valued functions

The mapping will be defined by the leftmost position in the genome i that
maximizes the posterior probability of the read. The short reads contain a
quality measure that informs us on the probability of having an incorrect
base call in that sequence. Our approach consists in creating a search policy
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that takes into account the context of the sequence and the quality of the
scores. We thus want to calculate the probability of the position i of the
short read, r in genome g; or P (i|r,g).

We first map the genome g in its corresponding sg1, s
g
2, . . . , s

g
N−K+1

positive integer values in the range [0, 264] using the encoding function
f(·) defined above. Then, the read r is also mapped into a sequence of
s1, s2, . . . , sJ−K+1 (J = |r|) using the encoding function f(·). The
set I(s) in Equation (1) induces some properties that facilitate operating
with all the genomic locations both in the algorithms and the calculation
of the lower bound of the probability of alignment. Lemma 1 formalizes
the fact of having a genome location of r, under the assumption that the
NGS reads originate from the genome g with no errors or mutations.

Lemma 1. Given a short read r obtained from genome g at position i

with no errors or mutations, the intersection of all the sets is

I(s1) ∩ (I(s2)− 1) ∩ . . . ∩ (I(sJ−K+1)− J +K) = S . (2)

Then, S is not empty, and i ∈ S.

Proof. Since the reads r1, r2, . . . , rJ are originated at the genome
location gi, gi+1, . . . , gi+J−1 with rj = gi+j−1 for j = 1, . . . , J ,

then H(f
(
σK
j (r)

)
) = H(f

(
σK
i+j−1(g)

)
) with the operator σK

j

extracting the sequence of bases from j to j + K − 1. Thus, we have
the following cases.
i) If there is a unique repetition of r in the genome, then
I(f

(
σK
i+j−1(g)

)
) = i + j − 1 for all j = 1, . . . , J . Thus,

{I(f
(
σK
i (g)

)
)}∩{I(f

(
σK
i+1(g)

)
)−1}∩. . .∩{I(f(σK

i+J−K(g)))−
J +K} = {i} ∩ {i+ 1− 1} ∩ {i+ J −K − (J −K)} = {i} = S.
Since there is at least one repetition in the genome then S is not empty and
i ∈ S.
ii) If there are multiple repetitions of the the sequence r in the genome,
then I(f(σK

i+j−1(g))) = {ik + j − 1} for all j = 1, . . . , J and k =

1, . . . , NR, withNR the number of repetitions in the genome with i1 = i

representing the original copied location. Then,

I(f(σK
i (g))) ∩ {I(f(σK

i+1(g)))− 1} ∩ . . .

∩ {I(f(σK
i+J−K(g)))− J +K} =

= {ik}NR
k=1 ∩ {ik + 1− 1}NR

k=1 ∩ . . .

∩ {ik + J −K − (J −K)}NR
k=1 = {ik}NR

k=1 = S

{ik}NR
k=1 ∩ {ik + 1− 1}NR

k=1 ∩ . . .

∩ {ik + J −K − (J −K)}NR
k=1 = {ik}NR

k=1 = S.

Since i = i1 ∈ {ik}NR
k=1, then i ∈ S and S is not empty.

■

It follows from (Dembo et al., 1994; Karlin and Altschul, 1990) that
for increasing |r|, S converges to i with probability almost one. It is easy
to build a deterministic algorithm based on Lemma 1 that is essentially a
special case of the Bayesian bound algorithm that we propose in the next
section. A deterministic algorithm that does not use the quality scores is
forced to evaluate all the possible locations when |S| > 1 and choose one
of them based on other criteria.

2.4 Lower bound of the posterior probability

As in Section 2.3, we first map the genome g in its corresponding
sg1, s

g
2, . . . , s

g
N−K+1 positive integer values in the range [0, 264] using

function f(·) as shown above. Then, we apply f(·) to map each short
read in its encoded sequence of positive values s1 to sJ−K+1. When

considering possible mismatches, we need to calculate the probability of
r, mapped as a sequence of numbers s1 to sJ−K+1, to be located at
position i as follows

P (i|r) = P (i|sJ−K+1, . . . , s1) . (3)

Since quality scores are available, and Lemma 1 provides the framework
to map genome location i to read location j via the multi-valued function,
we can estimate the probability of having a value of sj = s at location
j in the read, given that we are at location i in the genome. Therefore,
we use the Bayes Theorem (Bayes, 1764) to be able to express P (i|r) in
terms of probabilities that we can calculate from the data. The probability
of matching a genome location is

P (i|r) = P (i|sJ−K+1, . . . , s1) =
P (sJ−K+1, . . . , s1|i)P (i)

P (sJ−K+1, . . . , s1)
,

where i denotes the genome/chromosome position that matches the
beginning of the short read as stated in Lemma 1. The prior probabilities
of the short reads, P (sJ−K+1, . . . , s1), are the same regardless of the
genome position i. Thus, this prior probability normalizes by a constant
the conditional probability values, P (r|i), for any genome/chromosome
alignment. We denote the prior probability of the reads with the constant
A and simplify the above expression to a manageable format as

logP (i|r) +A = logP (i) + logP (sJ−K+1, . . . , s1|i). (4)

The prior probability on the genome position, P (i), depends on the
chromosome and/or genome size. Since we may compare short reads
against different chromosome sizes within a genome, we cannot assume
that P (i) is a constant.

The optimal choice of the genome location i given the data can be
obtained from argmaxi{logP (i|r) + A}. In optimization terms, an
aligner should be finding argmaxi{[logP (i|r) + A − θ′]+}, where
[·]+ is the positive clip function. Since A is constant, we merge A and θ′

into one new single parameter θ = A − θ′. This problem may not have
a solution because some of the reads in the FASTQ files may contain low
quality base calls.

Let us apply the chain rule to P (sJ−K+1, . . . , s1|i) to make it more
amenable for analysis:

P (sJ−K+1, . . . , s1|i) = P (sJ−K+1, . . . , s2|s1, i)P (s1|i) =

P (sJ−K+1, . . . , sK+1|sK , . . . , s2, i)P (sK |sK−1, . . . , s1, i) · · ·P (s1|i)

= P (sJ−K+1|{sπ(J−K+1)}, i) · P (sJ−K |{sπ(J−K)}, i) · · ·P (s1|i),

where the set π(k) is defined as π(k) = {k−1, k−2, . . . , k−K+1}.
The reason is that two encoded sequences si and sj at distance lower
or equal to K have bases in common, and thus, there exists a statistical
dependence between them. We can write equation (4) as

logP (i|r) +A = logP (i) +

J−K+1∑
j=1

logP (sj |{sπ(j)}, i). (5)

The exact solution of equation (5) is not straightforward to calculate for
all the positions i in the genome. We will circumvent it by proposing a
tight lower limit in Theorem 1. To be able to introduce Theorem 1, we first
need to explain how we obtain the probability of having an element of the
short read, sj , being generated at the genome position i.
Using quality scores to build P (sj |i). To calculate expression (5), we
need to estimate how good the short read is given all the sources of errors.
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The probability of having an encoded integer sj given that the read comes
from position i in the genome is

P (sj |i) =
{

qj if i ∈ I(sj)− j + 1,
1−qj
4K−1

if i /∈ I(sj)− j + 1.
(6)

In the absence of any other knowledge, we assume that the rest of the
genome positions i that are not in {I(sj)− j +1} are evenly distributed
on the remaining possible values of short sequences of sizeK. P (sj |i) can
be calculated based on the individual probability calls. Every base pair ri
in the short read has an estimated error probability, κi. So, the probability
of having a correct read of K consecutive bases starting at position j of the
read, qj , is computed in a similar way as in the Slider algorithm (Malhis
et al., 2009)

qj =

K−1∏
i=0

(1− κi+j) . (7)

The values of qj corresponding to each sj value can be simultaneously
calculated as the FASTQ file is read. It can be typically seen that the 5’
end of the read has fewer sequencing errors than the 3’ end (Hillier et al.,
2008). We now can introduce Lemma 2 and Theorem 1.

Lemma 2. Given a short read r with possible mismatches and
obtained from genome g at position i, a lower bound of the probability
that a non-overlapping subset of indices T (o) of r is aligned to the
genome/chromosome location i is given by the following equation

logP (i|r, o) +A ≥ logP (i) +
∑

∀j∈T (o) s.t. i∈{I(sj)−j+1}
log qj

+NÎ(o) log
1−Q

4K − 1
,

(8)

where Q = maxJ−K+1
j=1 qj , and NÎ(o) = |{j ∈ T (o) s.t. i /∈ I(sj)−

j + 1}|. The set T (o) defines the non-overlapping sets of indices for
o = 1, . . . ,K such that

∑K
o=1 P (T (o)) = 1 and T (1) ∩ T (2) ∩ . . . ∩

T (K) = ∅. These non-overlapping sets can be built as T (o) = {k : k =

o+n ·K; J−K+1 ≥ k ≥ 1;n ∈ N}. The above lower bound becomes
the equality if and only if either of these conditions are verified

a) qj = maxJ−K+1
k=1 {qk} for j ∈ T (o) s.t. i /∈ {I(sj)− j + 1}.

b) NÎ(o) = 0.

Proof. The conditional probability P (i|r, o) can be written as
P (i|r, o) = P (r|i, o)P (i ∩ o)/P (r ∩ o). Since the read offset o is
independent of both the genome location i and the actual read r, we
have P (i|r, o) = P (r|i, o)P (i)/P (r). Equivalently, logP (i|r, o) +
logP (r) = logP (r|i, o) + logP (i). As discussed before, P (r)

is a constant, and it is denoted as A. When restricted to the subset
T (o), P (r|i, o) can be factorized since the conditional dependencies
P (sj |{sπ(j)}, i) in Equation (5) disappear as we sample the sequences
s1 to sJ−K+1 every K positions. Then, the problem becomes

logP (i|r, o) +A = logP (i) +
∑

j∈T (o)

logP (sj |i), (9)

logP (i|r, o) +A = logP (i) +
∑

∀j∈T (o) s.t. i∈{I(sj)−j+1}
log qj+

∑
∀j∈T (o) s.t. i/∈{I(sj)−j+1}

log

(
1− qj

4K − 1

)
.

(10)

Let us call Q = maxJ−K+1
k=1 qk , then log

(
1−qj
4K−1

)
≥ log

(
1−Q
4K−1

)
for any index j since the logarithm is a strictly increasing function. Thus,
we can rewrite

logP (i|r, o) +A ≥ logP (i)+∑
∀j∈T (o) s.t. i∈I(sj)−j+1

log qj +NÎ(o) log
1−Q

4K − 1
,

(11)

where NÎ(o) = |{j ∈ T (o) s.t. i /∈ I(sj) − j + 1}|, and we recover
the equality if only if Q = qk ∀j ∈ T (o) s.t. i /∈ {I(sj) − j + 1}
or NÎ(o) = 0. The condition NÎ(o) = 0 is satisfied when {j ∈
T (o) s.t. i /∈ I(sj) − j + 1} = ∅, which implies that there exists an
exact matching (no mismatches) between the reference genome g and the
read r. This is a desirable and intuitive property for the bound proposed in
Lemma 2.

■

Now, we can formulate Theorem 1 whose proof is based on the lower
bound presented in Lemma 2.

Theorem 1. A lower bound of the probability that a short read, r, is
aligned to the chromosome/genome location i is

logP (i|r) ≥ −A+ logP (i) +
1

K

K∑
o=1

L(o) , (12)

with

L(o) =
∑

∀j∈T (o) s.t. i∈I(sj)−j+1

log qj +NÎ(o) log
1−Q

4K − 1

and Q = maxJ−K+1
j=1 qj . The lower bound becomes an equality iff all

the following conditions are satisfied

a) qj = maxJ−K+1
k=1 {qk} for all j = 1, 2, . . . , J−K+1 orNÎ(o) =

0.
b) L(o) = L(o′) for all pairs o and o′.

Proof. We use the total probability Theorem (Pfeiffer, 2013) to express
logP (i|r) in the subset of non-overlapping sets, T (o) as

logP (i|r) = log
K∑

o=1

P (i|r, o)P (o) = log
1

K

K∑
o=1

P (i|r, o) . (13)

Given that the logarithm is a strictly concave function, we can now apply
the Jensen’s inequality (Jensen, 1906) to move the logarithm inside the
summatory, and we obtain

logP (i|r) ≥
1

K

K∑
o=1

logP (i|r, o) , (14)

which is the equality if P (i|r, o) = P (i|r, o′) for all pairs
o, o′. Using equation (10) in Lemma 2 and replacing logP (i|r, o)
into equation (14) leads to equation (12). P (i|r, o) = P (i|r, o′)
for all pairs o, o′ is verified under the same conditions of
Lemma 2 and

∑
j∈T (o) s.t. i∈{I(sj)−j+1} log qj+NÎ(o) log

1−Q
4K−1

=∑
j∈T (o′) s.t. i∈{I(sj)−j+1} log qj + NÎ(o

′) log 1−Q
4K−1

for all pairs o
and o′.

■
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In terms of the practical implementation of the algorithms derived
from Theorem 1 and making use of the notation employed in Lemma 1
for the sets I(s), it is algorithmically easy to track the set of indices {i}
of the union of I(s1) ∪ (I(s2) − 1) ∪ . . . ∪ (I(sJ ) − J + 1). Since
we may have some subsets I(sj) that can be empty, we should track all
the possible indices of the union instead of the intersection. Moreover, we
lack a fast operator that can access/store the indexes complementary to
the union of the set because it is large. This is why we impose the lower
bound in Lemma 2 by calculating Q. Another important aspect is that
despite P (i) depends on the number of base pairs in the chromosomes
roughly as − logNc, where Nc is the size of chromosome c, the search
can be reduced to the set of admissible genomic locations, i, by limiting
the algorithm to the coding regions of the genome.

Finally, in terms of the conditions for equality, in most of the reads
the qj values do not vary more than 1% from each other which means
that the inequality from equation (10) to (11) is fairly close to the equality.
The condition b) for equality in Theorem 1 includes a broad range of
cases. Interestingly, a sufficient but not necessary condition to have this
equality is to have an exact matching (Lemma 1) and qk constant for all
k = 1, . . . , J − K + 1. For example, an exact matching with no errors
or mutations in the reads (Lemma 1). This property shows the consistency
of the bound as it shows that the better the quality of the read, the tighter
the bound.

Using Theorem 1, we can now define the alignment algorithm based
on the FBB as the following optimization problem

G(θ) = argmax
i

{[logP (i)+

1

K

K∑
o=1

 ∑
∀j∈T (o) s.t. i∈I(sj)−j+1

log qj

+NÎ(o) log
1−maxj qj

4K − 1

]
− θ

]
+

}
.

Note that θ is a parameter that has to be set by data validation for a
subsample of all the reads. The reason A vanishes from the optimization
problem is because it is a constant. It follows from

argmax
i

{[logP (i|r)− θ]+} = argmax
i

{[logP (i|r)+A− θ
′
]+}. (15)

Whenever we use the FBB as an optimization algorithm based on the
parameter θ, we will denote it by FBBA. Note that the FBBA algorithm
implements a best-hit reporting policy.

2.5 Lower bound of the posterior for paired-end reads

The previous section allows us to obtain a lower bound of the posterior
probability of the genome location for one single-end read. It is possible
to extend Lemma 2 and Theorem 1 to evaluate the posterior probability of
paired-end reads given the probability of the distance between the paired-
end reads. In particular, we want to calculate the probability that the paired-
end read given by r and r′ aligns to the locations i and i+d, respectively,
where d represents the distance between the leftmost (5’) end of r and r′.
Thus,

P (i, i+ d|r, r′) =
P (r, r′|i, i+ d)P (i, i+ d)

P (r, r′).
(16)

We can now formulate the next Theorem:

Theorem 2. A lower bound of the probability that a paired-end read
given by r and r′ aligns to the chromosome/genome locations i and i+d,
respectively, is

logP (i, i+ d|r, r′) +B ≥ logP (i) + logP (d)+

+
1

K

K∑
o=1

 ∑
∀j∈T (o) s.t. i∈I(sj)−j+1

log qj +NÎ(o) log
1−Q

4K − 1



+
1

K

K∑
o=1

 ∑
∀j∈T (o) s.t. i+d∈I(s′j)−j+1

log q′j +N ′
Î
(o) log

1−Q′

4K − 1

 .

with r mapping to s1, . . . , sJ−K+1 with the associated quality
values q1, . . . , qJ−K+1, and r′ mapping to s′1, . . . , s

′
J−K+1 with

the associated quality values q′1, . . . , q
′
J−K+1. Moreover, Q =

maxJ−K+1
j=1 qj and Q′ = maxJ−K+1

j=1 q′j .

Proof. i) The prior probabilityP (r, r′) is independent of the genome
location i and the genome/chromosome. Therefore, in terms of the
optimization problem, we can assume P (r, r′) = B with B being a
constant.

ii) P (i + d, i) = P (i + d|i)P (i), but P (i + d|i) = P (d) which is
the probability of the distance between the paired-end reads. Thus,
logP (i+ d, i) = logP (d) + logP (i).

iii) Given that we are copying with some errors the location i and i+ d

from the genome using the process provided in equation (6), we can
write P (r, r′|i, i+ d) = P (r|i)P (r′|i+ d).

We apply i), ii) and iii) into equation (16) to obtain

logP (i, i+ d|r, r′) =−B + logP (i) + logP (d)+

logP (r|i) + logP (r′|i+ d)
(17)

If we apply Lemma 2 and the Jensen’s Inequality of Theorem 1, we
recover inequality (17) that becomes the equality if conditions a) and b) in
Theorem 1 are satisfied for r and r′.

■

We iteratively estimate P (d) with one single pass over the data.
More details can be found in Supplementary Material, Section 1. We
can now formulate the following definitions to measure false paired-end
alignments/mappings.

Definition 1 (False positive paired-end alignments). A pair of reads r
and r′ are a false positive paired-end alignment/mapping, if they both are
the best single-end alignment according to Equation (15) when considered
independently, but they are not the optimum value for Equation (17) in
Theorem 2 when considered as a pair.

Definition 2 (False positive paired-end alignments from SAM). A
pair of reads r and r′ are a false positive paired-end alignment/mapping,
if they both are paired match in the SAM file, but they are not the optimum
value for Equation (17) in Theorem 2 when considered as a pair.

2.6 Extending FBB to indels

Insertions and/or deletions (indels) in NGS reads have a natural extension
in our formalism. These are the two main changes with respect to the
probabilistic framework presented in the preceding sections: i) the multi-
valued function, H(·) can be expanded to contain indels on all the K

consecutive bases of the genome, and ii) there will be an offset of the
originating location of the genome due to the indel; the originating location
of the genome does not match when an indel has occurred at some location
in the NGS read according to our function from the read of K bps to the
genomic location I(sj) − j + 1. The probability of having a correct

 at U
niversity of C

alifornia, San D
iego on Septem

ber 27, 2016
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


6

read of size K shown in Equation 7 does not need to be modified as the q-
scores provided with reads already give an estimate of the error probability,
disregarding whether the source of error is either a mutation or an indel.

In terms of the Bayesian formalism the main modification is induced
by ii), because the map from the extracted K-sequence read to the genome
location I(sj) − j + 1 becomes shifted if there exists indels at any
of the coded K sequences s1 to sj−1. For example, if the NGS read
contains δ− deletions in the middle of the read, then the last encoded
sequence of the read, sj∗ with j∗ = J − K + 1, has δ− base shifts
with respect to the genuine genome location given by I(s1); that is,
I(sj∗ )− j∗ + 1 = I(s1)− δ−. In general, let δ(j) = δ+(j)− δ−(j)

be the difference between the accumulated insertions and deletions up to
position j in the encoded read {s1, s2, . . . , sj∗}. Then, we can rewrite
Lemma 2 as follows.

Lemma 3. Given a short read r with possible mismatches and/or indels,
and obtained from genomeg at position i, a lower bound of the probability
that a non-overlapping subset of indices T (o) of r is aligned to the
genome/chromosome location i is given by the following equation

logP (i|r, o) +A ≥ logP (i) +
∑

∀j∈T (o)
s.t. i∈{I(sj)−j+1+δ(j)}

log qj+

+NÎ(o) log
1−Q
4K−1

,

where Q = maxJ−K+1
j=1 qj , and NÎ(o) = |{j ∈ T (o) s.t. i /∈ I(sj)−

j + 1 + δ(j)}|. The set T (o) defines the non-overlapping sets of indices
for o = 1, . . . ,K such that

∑K
o=1 P (T (o)) = 1 and T (1) ∩ T (2) ∩

. . . ∩ T (K) = ∅. These non-overlapping sets can be built as T (o) =

{k : k = o + n · K; J − K + 1 ≥ k ≥ 1;n ∈ N}. The scalar
function δ(j) = δ+(j)−δ−(j) is the difference between the accumulated
insertions and deletions up to j ∈ T (o). The above lower bound becomes
the equality if and only if either of these conditions are verified

a) qj = maxJ−K+1
k=1 {qk} for j ∈ T (o) s.t. i /∈ {I(sj)−j+1+δ(j)}.

b) NÎ(o) = 0.

Proof. The proof of Lemma 3 follows from the proof of Lemma 2 by
replacing the mapping function from i ∈ {I(sj)−j+1} to i ∈ {I(sj)−
j + 1 + δ(j)}.

■

Note that Theorem 2 and Lemma 3 build on Lemma 2. We only have
to replace i ∈ {I(sj) − j + 1 + δ(j)} by i ∈ {I(sj) − j + 1} to
make them consistent with the indel mapping function. To calculate δ(j)

note the following. Given two independent (non-overlapping) K-mers
starting at the read positions j and j′ and with encoding sequences sj
and sj′ , respectively, the probability that sj′ aligns by chance within
±l bases from I(sj) is P (I(sj′ ) ∈ [I(sj) − l, I(sj) + l]) = 2l+1

N

with N the length of the reference genome. Note that any pair of indices
j and j′ in the partition T (o) = {k : k = o + n · K; J ≥ k ≥
1, n ∈ N} defined in Lemmas 2 and 3 satisfies this property for a given
offset o. Each of the partitions T (o) for o = 1, 2, . . . ,K has at least
M = ⌊J−K+1

K
⌋ non-overlapping {sj}j∈T (o). Then, the probability

that exactly m ≤ M indices in T (o) fall within ±l of I(s1) by chance is

P (m, I(s1)) =
(M
m

) (
1+2l
N

)m (
1− 1+2l

N

)M−m
, and the probability

that at least m ≤ M indices in T (o) fall within ±l of I(s1) by

chance is P ′(m, I(s1)) =
∑M

k=m

(M
k

) (
1+2l
N

)k (
1− 1+2l

N

)M−k
.

For example, if the NGS reads have J = 100, and we chose K = 14

the probability that 50% of the encoded {sj} are within ±10 bps from
the location of I(s1) is 2 · 10−13 for a genome with N ≈ 106. When
extending the location interval to l = 100, the probability that 50% of the

encoded {sj} are within±100 bps from the location of I(s1) is 2·10−10.
Thus, if we use Lemma 2 and we can find at least 50% of T (o) within
10 bps, then it is very likely that there exists one or more indels in the
NGS read. The method to correct for the indels is straightforward now.
It consists in finding the nearest and existing P (i|r, o) and assign all the
nearby contributions to the optimal location i.

3 Results
We evaluate the performance of several non-spliced well-known aligners
under different parameter settings (see Supplementary Material, Section 2)
in real and simulated RNA-seq data and using the FBB quantity as
reference. The aligners we compared are Bowtie (Langmead et al.,
2009), Bowtie2 (Langmead and Salzberg, 2012), BWA-MEM (Li, 2013),
Novoalign, Segemehl (Hoffmann et al., 2009), SHRiMP2 (Rumble et al.,
2009), and Soap2 (Li et al., 2009). We considered non-spliced aligners
as the multi-valued function is designed for contiguous nucleotides, so
when working with RNA-seq reads, it is expected to provide better results
for the transcriptome. Nevertheless, non-spliced aligners (and FBBA) can
also be used to align reads against a reference genome, but reads that
span an intron will not be aligned, which may lead to underestimate gene
expression. However, in those cases where the reference genome is poorly
annotated and splice variants are unknown, the use of FBBA or other non-
spliced aligners may be useful. Finally, it should be remarked that the
FBB score and the FBBA aligner are based on a best-hit strategy, and,
thus, aligners’ reporting modes have been configured accordingly.

3.1 Results on real data

We calculate the alignment on RNA-seq data from the Saccharomyces
cerevisiae for wild type, RNA-seq experiments from heart cells of the
Mus Musculus, and RNA-seq data from E. Coli exposed to Copper. We
randomly subsampled one million reads from each of the experiments
in each study. These RNA-seq data was selected because it contained
paired-end and stranded reads. The stranded paired-end reads from these
experiments allow us to determine: a) if the aligned pairs are correct
according to Definition 1 (or 2), and b) if the mRNA fragment is aligned
to the incorrect genome strand. If the paired-end reads align to the wrong
genome strand, then the alignment might be considered incorrect or, at
least, be flagged for further analysis. Based on these errors, we can obtain
an estimate of the F1-score, an accuracy measure commonly used in
information retrieval and defined as the harmonic mean of the precision
and recall (Salton and McGill, 1986). If we denote by A the alignment
as a percentage provided by each of the algorithms under comparison,
and we denote by TP and E the percentage of true positive and false
positive errors, respectively, provided by the FBB framework, then the
precision of each algorithm is P = TP/(TP + E). The recall measure
R requires estimating the number of false negatives that is lower or equal
than 100−A, thus the recall measure satisfies R ≥ A/100. The F1-score
is, therefore, lower-bounded by F ≥ 2 P

1+ 100
TP+E

= F ∗, and we can use

F ∗ as proxy for the F1-score. This estimated F1-score allows evaluating
the performance of each alignment algorithm with respect to ⟨FBB⟩, the
average over the FBB values provided by Theorem 2 and Lemma 3 for
each read r. From now on, we considered that two aligners map a read to
the same genome position if their positions are at distance of 2 nucleotides
at most. Computational times of FBBA and FBB on these datasets are
provided in the Supplementary Material, Section 4.
Results for the Saccharomyces cerevisiae data (Fig. 1a). Results for
Saccharomyces cerevisiae – chromosome XV, and data from Bioproject
number PRJNA275812 are presented. In all cases, the percentage of false
positive paired-end alignments, computed according to Definition 1 (or 2),
decreases as ⟨FBB⟩ increases. The algorithm based on Theorem 2 filters
them out because it is controlling for the distance between pairs during the
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Fig. 1: Alignment comparison of the Bowtie, SHRiMP2, Soap 2, BWA MEM, FBBA, Novoalign, Bowtie 2, and Segemehl on the (a) Saccharomyces
cerevisiae genome - Chromosome XV, (b) Mus Musculus transcriptome - Chromosome XVIII, and (c) E. Coli genome as a function of the average FBB
values, ⟨FBB⟩. Results show the average values over all the experiments in each dataset. (top) Percentage of true positive pairs according to FBB
framework. (middle) Percentage of false positive pairs according to Definition 1 (or 2). For genomic mappings (a and c), the percentage of alignments to
genes on the opposite strand is also included in the error rate. (bottom) F ∗, a proxy of the F1-score (see text for more details).

optimization. The percentage of strand-incorrect alignments is calculated
following the annotations in the corresponding gff file.

After projecting the command parameters of all the alignment methods
and parameter configurations into the average Bayesian bound ⟨FBB⟩, it
is noticeable that most methods reach similar alignment percentage values
for a given ⟨FBB⟩ except for Segemehl. Segemehl (Hoffmann et al.,
2009) was shown to be a robust method on simulated data (Caboche
et al., 2014); however, for this dataset it is not as competitive (see
Supplementary Material, Section 2 for the options used). BWA MEM
shows a competitive proxy F1-score (F ∗), but it has the largest error rates.
The stricter parameters of Soap 2 (-M 0), Bowtie 2 (–score-min C,0)
and Bowtie (-v 0) lead to almost the same ⟨FBB⟩ location (-17.57) for
the three panels.
Results for the Mus Musculus data (Fig. 1b). To compare with a larger
genome, we present the results for Mus Musculus data (Bioproject number
PRJNA244374, accession numbers SRR2032135-38), chromosome
XVIII. In this case, alignment against Mus Musculus transcriptome was
considered to show FBB and FBBA flexibility. Error rates in this case are
only referred to the false positive pairs (Definitions 1 and 2), as locations
in the annotation file are referred to positions in the genome. However,
FBB and FBBA can also be applied when using Mus Musculus genome
as reference given their computational efficiency. All the alignment
methods except Segemehl and FBBA generate similar performance. FBBA
generates lower errors because by construction it filters false positive pairs
using Theorem 2, it may be obtaining larger alignment rates than the other
methods as it does not impose any filter in terms of maximum number of
substitutions and indels. Segemehl generates the lowest alignment rates
and moderate error rates, which leads Segemehl to produce the lowest F ∗

as in the case of Saccharomyces cerevisiae data. BWA MEM does not yield
large ⟨FBB⟩ values. Some parameter configurations produce competitive
F ∗ scores, but high false positive rates.
Results for the E. Coli data (Fig. 1c). We compared the alignment methods
with the densely annotated E. coli K-12 MG1655 genome using RNA-seq
data obtained after E. coli was exposed to copper. BWA-MEM can perform
similarly as the rest on theF ∗ metric for low FBB values and only for some
command option parameters. In contrast, for the largest FBB values, its
performance is behind most aligners due to its high false positive rate. On

the other hand, Segemehl has similar error rates than most of the mappers,
but its alignment rate is worse; therefore, its F1-score estimate F ∗ is the
lowest one. All the rest of the algorithms are fairly close to each other in
this case, perhaps because it is a prokaryote.

Overall, most aligners considered in this work, parametrized as
described in the Supplementary Material, Section 2, yield similar results
in terms of alignment, error rates, and, F ∗ for a given value of the
average FBB score, ⟨FBB⟩. This shows that ⟨FBB⟩ is a good Bayesian-
based gold standard to compare aligners and parameter settings. However,
Segemehl’s proxy F1-score is lower than that of other mappers in all cases,
as it produces less alignments than other methods and similar error rates.
BWA MEM also presents a different behavior when compared to other
aligners. While it has been shown to be relatively close to other mappers
in the Saccharomyces cerevisiae and E. Coli data in terms of ⟨FBB⟩
values, its ⟨FBB⟩ scores are generally much lower for Mus musculus.
When providing comparable ⟨FBB⟩ scores, its error rates are always the
largest.
Comparison with other studies. First of all, it should be noted that it is
difficult to relate our results to those in other comparative studies in the
literature mainly because of (i) different reporting modes, and (ii) different
parameter settings. For example, results in (Caboche et al., 2014) are not
fully comparable with the ones here presented as they are based on all-
hits reporting mode. Regarding differences in the parameter configuration,
in this work we swept a broad spectrum of parameters and compare
aligners based on the FBB score; however, in other works, mappers’
parameters are generally set to the default values, which is likely to produce
distant ⟨FBB⟩ scores for different aligners and hinder their comparison.
This is the case of RABEMA’s experimental setup (any-best reporting
mode) (Holtgrewe et al., 2011). Nevertheless, some of our results are in
line with that obtained in (Holtgrewe et al., 2011), where Bowtie and Soap2
provide similar performances with low error rates in general. This is also
observed in our results. Though Shrimp2 is the worst method in (Holtgrewe
et al., 2011), we obtained rates very similar to Bowtie and Soap2. As
already discussed, differences may be due to the different parameters
settings used. The BWA aligner used in RABEMA is different from
BWA MEM, making the results incomparable in this sense. Moreover, the
comparison of BWA MEM against Bowtie 2 is consistent with (Břinda
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Fig. 2: Scatter plot of the real F1-score (F1-score) versus the proxy F1-
score F ∗ for different aligners (Bowtie, SHRiMP2, Soap 2, BWA MEM,
FBBA, Novoalign, Bowtie 2, and Segemehl) on simulated reads. Results
correspond to ART paired-end read simulations (Huang et al., 2012) on E.
Coli transcriptome with default parameters.

et al., 2016), where BWA MEM produces larger False Discovery Rates than
Bowtie 2 at the same level of alignment. Finally, in order to provide a fair
comparison under the same experimental setup, we used simulated data to
compare FBB to Cadbure (Kumar et al., 2015), one of the state-of-the-art
approaches to compare aligners that does not need simulated data either.
As it is shown in Supplementary Material, Section 3.1, Cadbure and FBB
yield similar results in terms of F1-score, but Cadbure does not provide a
gold standard Bayesian measure for each aligner, and its computational
cost is significantly higher than that of FBB.

3.2 Results on simulated data

Though using simulated data does not necessarily clarify the comparison
across alignment algorithms(Yu et al., 2012; Kumar et al., 2015),
simulations provide us with a ground truth to show that FBB indeed
helps in identifying incorrect alignments, and to determine whether theF ∗

score estimate is accurate. We used the ART simulator for next-sequencing
reads (Huang et al., 2012). Simulated reads of Escherichia coli str. K-12
substr. MG1655 transcriptome with length 100 were generated by using
the Illumina’s HiSeq 2000 sequencing system with a 20-fold read coverage.
ART generates unstranded simulated reads and, therefore, only the FBB
estimate for false positive reads (Definition 2) is considered as source of
error. More details on the experimental setup and results on simulated data
can be found in the Supplementary Material, Section 3. To summarize,
results on simulated data show that FBBA algorithm provides a F1-score
very close to 1 when using built-in, technology-specific read error models
and base quality scores. This means that maximizing the FBB score is
an effective strategy that leads to identify the vast majority of correct
alignments, while having a very low false positive rates. Additionally, the
analysis of the relationship between the real F1-score and the F1-score
proxy F ∗ (Fig. 2) reveals that F ∗ is indeed a good proxy for the true F1-
score. It is remarkable that F ∗ tends to underestimate the true F1-score for
Segemehl and BWA MEM, which partially explicates the results obtained
in Section 3.1.

4 Conclusions
We propose a new Bayesian bound for any NGS alignment algorithm that
generates SAM files. The proposed bound called Fast Bayesian Bound
(FBB) is presented in Lemmas 2-3 and Theorem 2, ant it fully integrates
the quality scores to evaluate the alignment. It is designed to be as fast as
possible for execution, and it is shown to be close to equality under certain
conditions. This bound can be used as a canonical reference to evaluate and

compare existing alignment methods, whose good performance usually
depends on properly tuning several parameters. The FBB can be integrated
in alignment algorithms that use indexing to map K-mers to genomic
locations, and, as example, we propose a Fast Bayesian Bound Algorithm
(FBBA) based on the maximization of the proposed bound.

The FBB reference values allow exploring many command options of
the scoring functions of NGS aligners by projecting the scoring options
of each algorithm into a single reference value in ⟨FBB⟩, representing
the average over the FBB values provided by Theorem 2 and Lemma 3 for
each short read. Moreover, FBB does not require to filter reads by quality
scores to improve consistency, which is a common practice in many other
algorithms. The FBB estimate can be used as an additional check of the
alignment properties of different algorithms. If the FBB cannot be adapted
to the particular requirements of the fast alignment methods, we provide
the software to calculate the average FBB values from the aligned SAM
files.

In our experiments on RNA-seq data to compare several aligners under
different configuration parameters and using best-hit reporting mode, we
used paired-end RNA-seq data because this type of data provides a natural
way to detect errors by determining how erroneous two aligned pairs are
based on a definition of false positive alignments (Definitions 1 and 2) that
relies on the proposed Bayesian bound. For stranded data, we can also
determine if the aligned pairs point at the incorrect strand of the genome.
These error estimations allow us to calculate a proxy of the F1-score
(F ∗) that is used for comparison purposes across alignment algorithms.
Though FBB estimates permits direct cross-comparisons without making
assumptions on the generative process of the reads, we have also generated
paired-end simulated reads in order to have a ground truth to show that (i)
the FBB score is able to identify incorrect alignments, and (ii) the proxy
F ∗ is a satisfactory estimate for the true F1-score. Simulated data also
allowed us to compare FBB to Cadbure to conclude that both algorithms
lead to similar F1-scores estimates in most cases. In the results section, we
show that most alignment algorithms achieve similar performance results
except for the BWA-MEM algorithm that produces higher level of errors,
and Segemehl that provides lower alignment rates and fails to reach the
same level of achievement than other mappers. Overall, most aligners
yield very similar results for a given FBB score, which indicates that it
is a very competent Bayesian-based gold standard to compare different
aligners under different parameter settings.
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