
Synchronization of Degrade-and-Fire Oscillations via a Common Activator

William Mather,1 Jeff Hasty,2,3 and Lev S. Tsimring3
1Department of Physics, Virginia Tech, 850 West Campus Drive, Blacksburg, Virginia 24061-0435, USA

and Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, Virginia 24061-0406, USA
2Department of Bioengineering, UCSD, 9500 Gilman Drive, La Jolla, California 92093-0412, USA

and Molecular Biology Section, Division of Biology, UCSD, 9500 Gilman Drive, La Jolla, California 92093-0368, USA
3BioCircuits Institute, UCSD, 9500 Gilman Drive, La Jolla, California 92093-0328, USA

(Received 10 March 2014; published 16 September 2014)

The development of synthetic gene oscillators has not only demonstrated our ability to forward
engineer reliable circuits in living cells, but it has also proven to be an excellent testing ground for the
statistical behavior of coupled noisy oscillators. Previous experimental studies demonstrated that a shared
positive feedback can reliably synchronize such oscillators, though the theoretical mechanism was not
studied in detail. In the present work, we examine an experimentally motivated stochastic model for
coupled degrade-and-fire gene oscillators, where a core delayed negative feedback establishes oscillations
within each cell, and a shared delayed positive feedback couples all cells. We use analytic and numerical
techniques to investigate conditions for one cluster and multicluster synchrony. A nonzero delay in the
shared positive feedback, as expected for the experimental systems, is found to be important for synchrony
to occur.
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Introduction.—In the past decade, remarkable progress
has been achieved in the new field of synthetic biology [1].
Along with developing synthetic biological systems for
novel therapeutical and bioengineering applications, syn-
thetic biology serves as a tool for elucidating fundamental
principles of biology using forward engineering of rela-
tively simple systems amenable to thorough theoretical and
experimental analysis. One particular area of rapid progress
has been the design and implementation of synthetic gene
oscillators. A number of intracellular oscillators mimicking
natural genetic clocks have been constructed since the
seminal repressilator [2], including those using interlocked
positive and negative feedback loop oscillators in bacteria
[3] and mammalian cells [4], and those leveraging quorum
sensing systems [5].
The robust gene oscillator designs used in Refs. [3,5],

and explored in Refs [6–8], were determined to depend on a
core negative feedback loop. It was shown that even a small
feedback delay is capable of generating long-period oscil-
lations in a strongly nonlinear regime through a so-called
degrade-and-fire (DF) mechanism [9]. In this regime, a
short (on the order of the time delay) but strong burst of
repressor protein synthesis is followed by the long period of
enzymatic protein degradation, which largely determines
the oscillation period.
Degrade-and-fire oscillations are especially sensitive to

noise since their period and amplitude are primarily
determined by the short transcriptional burst when the
number of repressor protein molecules is small and there-
fore stochasticity is strong [10]. Thus, a population of
noninteracting cells with genetically identical DF oscillator
circuits rapidly loses synchronization even if set to the

same phase initially. However, it has been well known since
Huygens that sufficiently strong coupling between oscil-
lators may lead to their synchronization even in the
presence of unavoidable stochastic variability. In
Ref. [5], we first demonstrated the synchronization of
synthetic gene oscillators though quorum sensing and
developed a detailed mechanistic model that demonstrated
good agreement with the experiment. In order to develop
deeper insight into the mechanism of synchronization,
we also studied a simple mathematical model of synchro-
nization of discontinuous DF oscillators in which firing
of individual oscillators was controlled a repressive inter-
action [11,12]. However, this model qualitatively different
from the experimental setup in which the oscillators were
synchronized by a common activator [5,8]. Furthermore,
the finite time required for the production of proteins
associated with activation also implies a delay in the
positive feedback, which is known to influence synchro-
nization phenomena [13–16].
In this Letter, we introduce and analyze a model for the

synchronization via delayed mutual activation of DF
oscillators that is general and simple enough to permit a
thorough analytical and numerical investigation. Within
this model, conditions for the synchronization of noisy DF
oscillations are reduced to finding roots of two transcen-
dental equations for the eigenvalues. In particular, a finite
time delay in the global positive feedback loop is found to
be critical for the robust single cluster synchronization.
It is worth mentioning that our study is distinct from
similar work on pulse-coupled integrate-and-fire oscillators
[17–21]. For instance, while integrate-and-fire “neurons”
are typically assumed to be continually affected by an
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(often discontinuous) coupling field, the oscillators in our
DF model are affected by a continuous coupling field only
during brief firing events.
Mathematical model.—Near the Hopf bifurcation, any

weakly nonlinear oscillator can be well characterized by a
single phase variable, and the dynamics of coupled phase
oscillators is governed by the seminal Kuramoto model or
its direct generalizations which have been studied in great
detail [22]. Here we are interested in gene oscillators far
from the Hopf bifurcation, in the strongly nonlinear DF
regime where classical results are not applicable. The
deterministic model of an isolated DF oscillator is based
on a single delay-differential equation for the concentration
of the repressor protein x [9],

dx
dt

¼ Fðxτ1Þ −
γx

K þ x
; ð1Þ

in which the first and second terms describe the synthesis
and enzymatic degradation of xðtÞ, respectively. The
synthesis rate Fðxτ1Þ depends on the delayed concentra-
tion xτ1 ¼ xðt − τ1Þ, and since x is an autorepressor,
dFðxÞ=dx < 0. An example of such an autorepressing
synthesis function is the Hill-type function FðxÞ ¼
αC2

1=ðC1 þ xÞ2 considered in Ref. [9]. When first taking
K infinitesimal but positive, and assuming FðxÞ remains
non-negative but decreases with x sufficiently quickly, then
for τ1 → 0 while the product Fð0Þτ1 remains fixed, it can
be shown for a wide range of parameter regimes that this
model generates quasisawtooth oscillations with approxi-
mate period T ¼ Fð0Þτ1=γ [9]. Thus, the model (1) can be
replaced by a discontinuous system where x decays linearly
with rate γ until it reaches x ¼ 0, when it instantaneously is
reset to x ¼ X0 ¼ Fð0Þτ1. By also including the noise in
the synthesis of repressor proteins that is intrinsic to gene
circuits, we arrive at the following dynamical equation
for the repressor protein concentration in a single DF
oscillator:

dx
dt

¼ ~Iðx; X0Þ − γ; ð2Þ

where ~Iðx; X0Þ is a stochastic impulse function such that
x → xþ X0 þ ~ξ when x ¼ 0, where ~ξ is a random variable
with average h~ξi ¼ 0. We choose for convenience of
analysis that ~ξ is independently and uniformly distributed
in ½−η=2; η=2�, though the physical situation can be more
complicated [see Supplemental Material (SM) [23] for
more background and motivation for approximations].
Furthermore, in the following we will treat η as an
independent parameter; however, in reality it is likely
dependent on the synthesis rate and therefore related to
X0. Thus, when we keep X0 fixed in our results, varying η
may be interpreted as adjusting the physically meaningful
relative noise strength.

The solution of Eq. (2) has a discontinuous sawtooth
shape. If ti is the time of the last “firing,” i.e., impulse, and
if ~ξi are independent uniform random variables distributed
in ½−η=2; η=2�, then the concentration of the repressor x
after time ti decays linearly, xðtÞ ¼ X0 þ ~ξi − γðt − tiÞ,
until it reaches x ¼ 0 at time tiþ1 ¼ ti þ ðX0 þ ~ξiÞ=γ, after
which x is instantaneously mapped to X0 þ ξiþ1, and the
process repeats. That the amplitude of the bursts varies
from firing to firing is typical of the synthetic gene
oscillators under study.
Now we extend the model and consider a system of N

DF oscillators with repressor concentrations xn; n ¼
1;…; N coupled to a single scalar activator concentration
A that provides global coupling. All oscillators contribute
to synthesis of this activator, and the activator A, in turn,
increases the amplitude of firing. This model is a direct
generalization of Eq. (2), but with one additional equation
describing collective activator synthesis by all oscillators.
These N þ 1 variables obey the following equations:

dxn
dt

¼ ~Iðxn; X0 þ νAτÞ − γ; n ¼ 1;…; N; ð3Þ

dA
dt

¼ 1

N

X
n

xn − βA; ð4Þ

where β is the degradation rate of the activator and
Aτ ¼ Aðt − τÞ, since we allow for a delay between syn-
thesis of the activator A and the commencement of
activation. Here, for simplicity, we assume a linear rate
of activator synthesis by individual xn.
Straightforward simulation of the model (see SM [23] for

details) leads to a variety of behaviors. Strong noise (large
η) is found to generate the asynchronous or homogenous
state, where the xn amplitudes are approximately uniformly
distributed at any given time. However, one or more
synchronized clusters may form for sufficiently small η,
where a cluster is roughly defined as a set of oscillators
having a small dispersion in their firing times (see Fig. 1 for
examples of tight clusters). Within this regime, numerical
simulation supports that an appropriate choice for τ can
robustly generate a single cluster, as demonstrated in
Fig. 2(a), while other choices for τ lead to the formation
of two- or even three-cluster populations, as demonstrated
in Fig. 2(c). Furthermore, Fig. 2(c) illustrates the coexist-
ence of metastable clusters, e.g., as indicated by the
“speckled” boundary between the one-cluster and two-
cluster regions.
Continuum limit.—Analysis of parameter regimes lead-

ing to various modes of synchronization in our model
becomes somewhat simpler when we take the thermody-
namic limit N → ∞. For an infinite number of oscillators
we can introduce a continuum probability density distri-
bution function fðx; tÞ for the repressor concentration x in
different cells at time t. It is easy to see that the set of
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discrete equations for the individual repression concen-
trations can now be replaced by the Liouville equation

∂tfðx; tÞ ¼ γ∂xfðx; tÞ þ γgðx; AτÞfð0; tÞ ð5Þ

that is coupled to the integro-differential equation for A,

dA
dt

¼
Z

∞

0

xfðx; tÞdx − βA: ð6Þ

Here the function gðx; AτÞ characterizes the distribution of
firing magnitudes (the jumps from 0 to the maxima in the
beginning of each period), and it has to be normalized to
conserve probability

Z
∞

0

gðx; AτÞdx ¼ 1: ð7Þ

As before, we assume that firing magnitudes are distributed
uniformly within ðX0 þ νAτ − η=2; X0 þ νAτ þ η=2Þ, such
that

gðx; AτÞ ¼ ΘðX0 þ νAτ − η=2Þ=η
−ΘðX0 þ νAτ þ η=2Þ=η; ð8Þ

where Θ is the Heaviside function. The asynchronous
solution to Eqs. (5) and (6) corresponds to time-indepen-
dent f0ðxÞ and A0. With the choice for g in Eq. (8), the
asynchronous solution for f0ðxÞ can be shown to be
piecewise linear, and the value for A0 only depends on
the solution to a quadratic equation (see SM for further
details [23]).
The stability of the asynchronous solution with respect to

small perturbations is useful when discussing synchroni-
zation, since it turns out that the corresponding bifurcation
diagram predicts surprisingly well the results from direct
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FIG. 2 (color online). (a) For τ ¼ 2, the standard deviation
(over time) of the mean oscillator value hxi for 1000 oscillators as
a function of parameters (see SM for simulation details [23]).
Note that the time variation of hxi is essentially zero in the
asynchronous regime. Boxed numerals indicate the number of
clusters associated with the given region of parameter space.
Other parameters are γ ¼ 1.0, β ¼ 1.0, and X0 ¼ 5.0. These
results do not appear to be sensitive to the initial conditions of
simulation (see SM [23]). (b) Associated linear stability analysis
of the continuum asynchronous state with respect to the mode j,
derived from numerical solution of Eqs. (11) and (12). Regions
below the presented lines are unstable to growing oscillations of
the density function. This is indicated for the one-mode instability
by a red shaded region. Notice the correspondence with (a): the
boundary between the blue region (asynchronous regime) and the
clustered region corresponds to the first mode bifurcation line in
(b). Panels (c) and (d) are the same as (a) and (b), respectively, but
for τ ¼ 4. In different regions of parameters, different modes
become unstable (d) and lead to formation of multiclustered states
in (c) as labeled. The “speckling” between boundaries in (c) is
consistent with multistability, as suggested by the coexistence of
several unstable modes in (d).
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FIG. 1 (color online). Different synchronization regimes for a
set of 1000 noisy DF oscillators. Pictured are the values of global
activator A (red line), the mean oscillator value hxi (dashed blue
line), and ten randomly selected oscillator trajectories xnðtÞ
(yellow lines). (a) Absence of synchronization for τ ¼ 0. Other
parameters are η ¼ 0.2, ν ¼ 0.2, γ ¼ 1, β ¼ 1, and X0 ¼ 5.
(b) Two-cluster regime for τ ¼ 0.5 and other parameters the
same as above. (c) Single-cluster regime for τ ¼ 2.
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numerical simulation of Eqs. (3) and (4). Seeking the
solution in the form

fðx; tÞ ¼ f0ðxÞ þ f1ðxÞ expðλtÞ þ oðf1Þ; ð9Þ

A ¼ A0 þ A1 expðλtÞ þ oðA1Þ; ð10Þ

and after rescaling time by setting γ ¼ 1, a straightforward
calculation leads to a pair of transcendental equations for
the complex eigenvalue λ (see SM for details [23]),

0 ¼ eλðPþη=2Þ þ ðeλη − 1Þ
�
νζe−λτ

Pη
−

1

λη
;

�
ð11Þ

0 ¼ ðλþ βÞζ − νζe−λτ þ P2

λP
; ð12Þ

where P ¼ X0 þ νA0 and ζ ≡ A1=f1ð0Þ. Notice that first
solving for ζ is straightforward, but solving for λ can be
highly nontrivial for general parameter values. We solve
this eigenvalue problem numerically by continuing solu-
tions for ν ¼ 0 and η small but finite, where these root
solutions can be labeled by an index corresponding to the
number of oscillations in the eigenfunction (see SM [23]).
This index corresponds to the number of clusters for full
nonlinear synchronization.
Figure 2 compares direct simulation of Eqs. (3) and (4) to

this linear stability analysis. The ability for the linear theory
to predict global dynamics is quite good, including the
prediction of clusters of definite size (e.g., two clusters),
and including regions of multistability, where multiple
cluster solutions coexist. We find that positive delay τ is
important for synchronization, since we find numerically
that the asynchronous solution is stable when τ ¼ 0. Thus,
the delay in the global positive feedback plays a crucial role
in the synchronization of these DF oscillators, as was
suggested in Ref. [5]. Figure 3 shows that there exists a
wide range of parameters when the first mode is the only
unstable solution corresponding to a single synchronized
cluster. However, in other parameter domains, higher-order
modes can also become unstable and lead to multicluster
solutions and multistability.
As mentioned above, in this analysis we consider the

noise strength η to be the independent parameter while
keeping the mean firing amplitude X0 fixed. However, in
reality both η and X0 are determined by the biochemical
details of the repressor protein synthesis. In the SM [23] we
present the results of simulations and the stability analysis
for the simple example of “multiplicative noise” in
which η ∝ X0.
Highly synchronized regime.—Now we consider the

opposite limit of strong coupling ν, when nearly all
oscillators are periodic and synchronized by the common
activator field. In this case, the activator field AðtÞ oscillates
strongly with the bulk of the oscillators. For small disorder

(η → 0), the periodic solution over the first period
(0 ≤ t < T) has the form

xsðtÞ ¼ Ps − γt; ð13Þ

AsðtÞ ¼ −
γt
β
þ Ps

β
þ γ

β2
þ e−βt

�
Asð0Þ −

Ps

β
−

γ

β2

�
; ð14Þ

with Ps ≡ X0 þ νAsð−τÞ. It holds that Asð−τÞ ¼ AsðT − τÞ
due to periodicity of the solution. Consistency requires that
the period T ¼ Ps=γ and AsðTÞ ¼ Asð0Þ, from which the
periodic solution can be determined.
To address the stability of this periodic solution, we

consider the interaction of a single noiseless DF oscillator
with this synchronized cluster. Since we operate in the limit
of large N, the influence of the test oscillator x on the
activator field can be neglected, and so we can consider the
“bulk” periodic solution AsðtÞ given and independent of x.
The dynamics of x is only affected by the values of the
activator field at the time τ before firing events: Asðti − τÞ,
where ti denotes times when x ¼ 0, enumerated by the
index i. The dynamics of a deterministic test oscillator
reduces to a map between the consecutive firing times ti,

tiþ1 ¼ ti þ γ−1½X0 þ νAsðti − τÞ�: ð15Þ

We can linearize this map with respect to the small
deviation of ti from the times when the bulk of the
oscillators fire, shifted to be iT for integer i. Introducing
δti ¼ ti − iT and linearizing Eq. (15), we obtain

δtiþ1 ¼ δti

�
1þ νγ−1

dA
dt

ðiT − τÞ
�
: ð16Þ

By periodicity, the condition for cluster stability is
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FIG. 3 (color online). The linear stability bifurcation diagrams
of the asynchronous state with respect to different modes as a
function of τ and ν for two values of η [η ¼ 0.2 in part (a), η ¼ 0.5
in part (b)],, with instability of a mode occurring above each line.
This is indicated for the one-mode instability by a red shaded
region. The colors of each curve correspond to the mode numbers
indicated in the legend in Figs. 2(a) and 2(b). Details of
calculations are similar to Figs. 2(a) and 2(b). In particular,
we find that the asynchronous state is stable when τ ¼ 0 and most
unstable when τ ¼ 2 (which roughly corresponds to the half of
the oscillator period) with respect to one-mode (single cluster).
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����1þ νγ−1
dA
dt

ð−τÞ
���� < 1: ð17Þ

Since AðtÞ in the synchronized regime always has a
minimum at the firing times (see Fig. 1), the derivative
dA=dt for sufficiently small (but nonzero) τ is robustly
negative, and therefore the synchronized regime is linearly
stable. This observation may explain the tendency to
reliably form a synchronous oscillation in the experimental
context [5,8].
In the presence of noise (η > 0), we find that this single

mode may be only metastable. We discuss this and related
phenomena in the SM [23]; e.g., see Figs. S1 and S2.
Discussion.—In this Letter we introduced an analytically

treatable model for a population of noisy degrade-and-fire
oscillators coupled through a common activator. Using this
model in the thermodynamic limit of infinitely many
oscillators, we derived conditions for the instability of
the asynchronous state and formation of one or multiple
clusters of synchronized DF oscillators. In particular, we
demonstrated the role of the activation delay τ. Too short or
too long of a delay can lead to multiple clusters, but a
moderate delay was found to robustly form a single cluster.
This trend was demonstrated in three different ways:
numerical simulation, stability analysis of the asynchro-
nous state, and the stability analysis of a single coherent
cluster.
Our model is similar in spirit to the model of harmonic

oscillators diffusively coupled through external medium
[16]. However, due to a very different nature of individual
oscillators (degrade-and-fire versus harmonic), we do not
find the phenomenon of “dynamical amplitude death,”
while the model of Ref. [16] does not describe multicluster
regimes and bistability.
In this work we assumed that all oscillators have the

same parameters, and only may dephase due to stochas-
ticity in the magnitude of individual firing events. It would
also be interesting to study the dynamics of oscillators with
randomized parameters X0 and/or γ (“quenched disorder”),
in analogy with the Kuramoto model of phase oscillators
with distributed frequencies [22]. One can expect a similar
phase transition to a synchronous regime at a certain
minimal coupling strength ν. On the other hand, we
assumed global coupling, whereas networks of coupled
oscillators with nonglobal coupling often exhibit complex
“chimera” states in which synchronized and nonsynchron-
ized phases coexist [21,24]. However, we leave the analysis
of these systems to future work.
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