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Statistics of cellular signal transduction
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Departments of *Physics, ‡Chemistry and Biochemistry, and §Bioengineering, ¶Institute for Nonlinear Science, and †Center for Theoretical
Biological Physics, University of California at San Diego, La Jolla, CA 92093

Contributed by Peter G. Wolynes, September 8, 2006

Cellular signal transduction often involves a reaction network of
phosphorylation and transport events arranged with a ladder
topology. If we keep track of the location of the phosphate groups
describing an abstract state space, a simple model of signal trans-
duction involving enzymes can be mapped on to a problem of how
multiple biased random walkers compete to reach their target in
the nucleus yielding a signal. Here, the first passage time proba-
bility and the survival probability for multiple walkers can be used
to characterize the response of the network. The statistics of the
first passage through the network has an asymmetric distribution
with a long tail arising from the hierarchical structure of the
network. This distribution implies a significant difference between
the mean and the most probable signal transduction time. The
response patterns for various external inputs generated by our
model agree with recent experiments. In addition, the model
predicts that there is an optimal phosphorylation enzyme concen-
tration for rapid signal transduction.

stochastic biology � first passage time � NFAT

Achieving a quantitative understanding of the reaction net-
works that transduce cellular signals is one of the major

challenges in biology. Signaling networks are found in a diverse
set of organisms, ranging from prokaryotes to eukaryotes, and
provide mechanisms for fundamental processes such as gene-
regulatory control and cellular communication. Qualitative de-
scriptions of the biomolecular components and mechanisms of
cellular signaling have greatly improved our understanding of
how cells function and have given insights into how to intervene
therapeutically when such signals are miscommunicated. Exper-
imental advances now allow quantitative studies of signal trans-
duction and thereby inspire theoretical treatments. Many net-
works of nonlinear reactions exhibit interesting behavioral
features as ultrasensitivity, adaption, robustness, and discrete
‘‘all-or-none’’ response, which have been quantitatively explored
(1–8).

A commonly occurring network topology is the reaction
ladder network. This network may be viewed as a generalization
of multiple-site phosphorylation�dephosphorylation cascades,
such as the pathway governing nuclear factor activation of T cells
(NFAT), which regulates the response of T cells to antigen
signaling (9–13). To stimulate T cells, NFAT must be trans-
ported to the nucleus. This transition occurs in response to a
conformational change that exposes a nuclear localization se-
quence (NLS), which is normally buried in the protein interior
in the inactive conformation and thus makes the NFAT inac-
cessible to transport by importin. The NLS becomes exposed in
response to the progressive dephosphorylation of specific serine
residues in its regulatory domain. This dephosphorylation occurs
in response to an increase of intracellular calcium ions that
activate calcineurin, which then dephosphorylates the masking
residues. Once a sufficient number of sites have been dephos-
phorylated, conformational changes expose the NLS so that it
can now be transported into the nucleus by the importin. This is

not a one-way process. Inside the nucleus, the NFAT may be
progressively rephosphorylated by kinases and subsequently
exported to the cytoplasm by the exportin Crm1 (10, 11). To
summarize this network generically, the NFAT can exist in a
variety of phosphorylation states and at various locations within
the cell. Transitions between these phosphorylation�compart-
mentalization states can be described as a network of reactions
consisting of two groups of species Ci and Ui, where the Ci species
reside in the cytoplasm and the Ui species reside in the nucleus
(Fig. 1). On each side of the cytonuclear barrier, there are M �
1 species having different levels of phosphorylation. This net-
work topology can generally be interpreted as representing
either processive or distributive mechanisms of phosphorylation
(14, 15). If the subscript i labels a specific order of phosphory-
lation, e.g., phosphorylation of residue A, followed by residue B,
followed by residue C, . . . , the network describes the processive
(de)phosphorylation; if i represents for the number of (de)phos-
phorylated residues, the network describes the distributive phos-
phorylation mechanism, e.g., one residue is first phosphorylated,
followed by two residues, then three residues, etc. Of course, the
rates connecting i and i � 1 will be different for the two
mechanisms, but the network topology remains the same. In the
following, we study the processive phosphorylation of residues.

The rates of both phosphorylation (by kinases) and dephosphor-
lyation (by phosphatases) are naturally modeled as Michaelis–
Menten reactions with rates that depend on the availability of
enzymes. Although dephosphorylations dominantly occur in the
cytoplasm and phosphorylations dominantly occur in the nucleus in
the case of NFAT signaling (9–11), in our model we allow them
both to occur in either environment with different rates. The
protein phosphorylation state by affecting the conformation of that
protein determines how easily it is translocated into or out of the
nucleus. In our model k�

i represents the reaction rate from Ci to Ui
and k�

i is the rate of going from Ui to Ci. An individual NFAT
molecule thus makes random walks through its prosphorylation�
location space according to these microscopic reaction rates.

The NFAT signaling network shares its topology with many
other networks in the cell. It simplifies to a typical two-state
system if there is only a single phosphorylation state; the network
resembles an enzymatic futile cycle when there are two phos-
phorylation states but no compartmental transport (16); and the
network is also similar to the Monod–Wyman–Changeux model
(17). The reaction ladder network thus presents a paradigm for
the interplay of spatial heterogeneity and posttranscriptional
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modification in the flow of biological information. The modifi-
cation reactions, conformational changes and intercompartmen-
tal transports are intrinsically stochastic events. On the ladder
network, each signaling molecule follows a path through the
network, causing transcription to occur at random times. When
the modifying enzymes are abundant, the network is effectively
linear and each molecule walks through location�phophoryla-
tion space independently. When enzymes are limited in number,
the network becomes nonlinear and the walks of different
signaling molecules interact by competing for enzymes. Ulti-
mately, it takes only one NFAT to turn on its target gene. Thus
we can say, somewhat anthropomorphically, that the individual
NFAT’s are competing in a race to the DNA. We thus have a
problem of determining the statistics of mean first passage for
multiple walkers.

The statistical problem of calculating the mean first passage
time (FPT) for random walkers has a distinguished history
(18–22). Here we will find the first passage time and the survival
probability in terms of a dynamic probability distribution. We
will then show that the exact solution of this problem of multiple
random walkers having the same goal does indeed agree with the
results of Monte Carlo simulation of the network when enzymes
are unlimited. The mean FPT distribution is found to be
asymmetric and has a long tail. The solution also shows there is
an optimal forward reaction rate yielding the most rapid arrival
of a viable signaling protein to the target.

Distribution of FPTs and Survival Probability
Different phosphorylation and dephosphorylation processes are
catalyzed by specific enzymes (23, 24). For simplicity of treat-
ment, we assume a universal kinase and a universal phosphatase,
Kc and Fc, in the cytoplasm and another set, Ku and Fu, in the
nucleus. Also for simplicity we assume only apo proteins can be
transported between the cytoplasm and the nucleus. The en-
zymes (Kc, Fc, Ku, and Fu) as well as the signaling protein
phosphatase complexes (C� i or U� i) and the signaling protein
kinase complexes (Ĉi or Ûi) cannot be transported.

Suppose that there are ci, c� i, and ĉi proteins in the Ci, C� i, and
Ĉi states and ui, u� i, and ûi proteins in the Ui, U� i, and Ûi states
respectively (i � 0, 1, 2, . . . , M). Then, the numbers of proteins
in each state is described by a 6M � 6 dimensional vector n� �
(ĉ0, c0, c�0, û0, u0, u� 0; . . . ; ĉM, cM, u� M, ûM, uM, u� M), where ĉ0, u� 0,
ûM, and c�M are zeros due to the boundaries of the network. The
numbers of the enzymes in the system are defined by a four
dimensional vector E� � (Fc, Kc, Fu, Ku). We define a state

��(t)� as ��(t)� � �n� ,E� P(n� , E� , t)�n� , E� �, where P(n� , E� , t) is the
probability having n� and E� numbers of proteins and enzymes
in the network. The master equation describing the network
can then be written as ���t��(t)� � W��(t)�, where W is the
transition rate matrix whose dimension depends on the total
numbers of enzymes and substrates.

Generally solving this master equation represents a challeng-
ing many-body problem. However, when the numbers of en-
zymes in the cytoplasm and the nucleus are very large compared
with the total number of signaling proteins, as often happens in
real biological systems, the phosphorylation and dephosphory-
lation processes that lead to the transitions of the signaling
molecules are uncorrelated. Each protein can then be modeled
as an independent random walker. Our assumption of an en-
zyme-saturated situation makes the mathematics of the network
relative simple and the problem of multiple but independent
random walkers can be solved exactly. This exact solution allows
several interesting properties of the network to be explored.

A key aspect characterizing signaling pathways is the time to
achieve a response after receiving an upstream signal, i.e., the
typical delay time between a stimulus and the corresponding
response. This is a stochastic quantity. The response occurs when
one of the random walkers successfully binds to the DNA. To
quantify this, we may consider the FPT for a random walker
starting from the initial position r�i, arriving at the final position
r�f for the first time. F(r�i, r�f, t) is the probability distribution of such
a random walker, initially in r�i, whose FPT of reaching the final
position r�f is time t. F(r�i, r�f, t) is related to the occupancy
probability P(r�i, r�f, t), which is the probability that a particle is
found at the position r�f at time t irrespective of when it arrived.
This relation is

P�r�i, r�f, t	 � �
0

t

d�F�r�i, r�f, �	P�s	�r�f, r�f, t � �	. [1]

Both the FPT probability F(r�i, r�f, �) and occupancy probability
P(r�f, r�f, t) are normalized through 
 dtF(r�i, r�f, t) � 1 and 
 dr�fP(r�i,
r�f, t) � 1. P(s)(r�, r�, t) is the occupancy probability with the
identical initial and final position, i.e., the chance of a particle
staying at and returning to the same position r� after time t. In
terms of Laplace transforms, the above equation can then be
rewritten as

F�r�i, r�f, t	 � �1� �P�r�i, r�f, t	�
�P�s	�r�f, r�f, t � �	��. [2]
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Fig. 1. The reaction ladder network. The C and U represent two distinct compartmental locations of the signaling molecules, say, cytoplasmic and nuclear
regions. The subscript i (i � 0, 1, 2, . . . , M) indicates the dephosphorylation states. The C� i and Ĉi (U� i and Ûi) are the signaling protein–enzyme complex forms.
The subscripts f, b, and c represent forward, backward, and catalyzed rates of each reaction. The k�

i and k�
i are the transport rates for transitions between Ci

and Ui.
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The survival probability is the probability that, up to time t, the
random walker still has never reached the target position r�f,
which is represented as S(r�i, r�f, t). By the definition, the survival
probability S is

S�r�i, r�f, t	 � 1 ��
0

t

d�F�r�i, r�f, �	. [3]

The above FPT probability and survival probability are for-
mulated for a single particle; however, it is straightforward to
expand this to the multiparticle case if there is no interaction
between random walkers. In the case of large number of
enzymes, multiple particles move independently and thus the
probability for having all N particles can be obtained by multi-
plying the survival probabilities for each single particle, i.e.

S�r�i, r�f, t; N	 � SN�r�i, r�f, t; 1	 � �1 � �
0

t

d�F�r�i, r�f, �; 1	�N

,

[4]

where F(r�i,r�f, t; 1) and S(r�i,r�f, t; 1) are the FPT and the survival
probability for a single particle. The probability of having exactly
z of total N particles in the position r�f at time t irrespective of their
arrivals is

P�r�i, r�f, t; N, z	 �
N!

z!�N � z	!
Pz�r�i, r�f, t	�1 � P�r�i, r�f, t	�N�z.

[5]

One defines the accumulated FPT probability Fac(r�i, r�f, t; N, z)
as the probability that at time t z of the total N particles have all
arrived at the destination for the first time by time t. The
expression is

Fac�r�i, r�f, t; N, z	 �
zN!

z!�N � z	!
SN�z�r�i, r�f, t; 1	

�1 � S�r�i, r�f, t; 1	�z�1�F�r�i, r�f, t; 1	. [6]

We may also define the simultaneous FPT probability Fsi(r�i, r�f,
t; N, z), which is the probability that at time t z of the total N
particles simultaneously arrived at the destination for the first
time. The corresponding expression is the same as that for single
particle case, i.e.,

Fsi�r�i, r�f, t; N, z	 � �1� �P�r�i, r�f, t; N, z	�

�P�s	�r�f, r�f, t � �; N, z	��.

Results
It is easy to assign different rates to each step and carry out the
calculations. For simplicity, we will first assume uniform forward
reaction rates �f as well as uniform backward rates �b and
catalyzed rates �c for all phosphorylation and dephosphorylation
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Fig. 2. Three typical trajectories of a random walker traveling from C0 to UM

are plotted as time vs. site number, i.e., the state of dephospharylation. The
red diamonds label a protein in the cytoplasmic form (Ci, C� i or Ĉi), whereas the
green dots label the nuclear form (Ui, U� i, or Ûi). The parameters are chosen as
follows: the phosphorylation site number M � 5, the forward reaction rates
��f � �f � ��f � �f � 0.2, the backward rates ��b � �b � ��b � �b � 1.0, the
catalyzed rates ��c � �c � ��c � �c � 1.0, the transport rates k�

M � k�
0 � 0.2, and

the ratio of transport rates �� � �� � 2.718.
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are the same as those in Fig. 2.

Table 1. Probability distribution of a random walker at time
t � 50

Ci � C� i � Ĉi Ui � U� i � Ûi

0.2236 0.0294
0.2098 0.0358
0.1540 0.0410
0.0983 0.0424
0.0571 0.0404
0.0358 0.0325

For a given i, the three terms Ci, C� i, and Ĉi with same phosphorylation states
are collected together to represent the total probability of a protein at the i
phosphorylation state in the C group. The three terms Ui, U� i, and Ûi are also
collected together for the same reason. Parameters are chosen the same as
those in Fig. 2.
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events. We also assume that the transportation rates k�
i increase

evenly and k�
i decrease evenly with the increase of the number

of unphosphorylated sites i, i.e., k�
i � k�

M(��)i�M, k�
i � k�

0 (��)�i

(i � 0, 1, 2, . . . , M). This assumption captures the empirical
observation that fully dephospharylated NFAT is much easier to
transport from the cytoplasm into the nucleus than phosphary-
lated NFAT. In the nucleus, the fully phospharylated NFAT is
most easily transported to the cytoplasm (23).

Comparison of the Exact Solution with Simulation. Fig. 2 illustrates
three trajectories taken from a Monte Carlo simulation of a
signaling protein traveling from the initial fully phospharylated
state C0 in the cytoplasm to the fully dephosphorylated state UM
in the nucleus (25, 26). The red diamonds in Fig. 2 indicate that
the protein is found in the cytoplasm regardless of its specific
form (Ci, C� i, or Ĉi), whereas the green dots indicate that the
protein is found in the nucleus regardless of its specific form (Ui,
Ūi, or Ûi). Transitions between red and green sites indicate a
transversal across the cytoplasm–nucleus barrier, whereas up
and down transitions indicate phosphorylation and dephosphor-
ylation events.

In Fig. 3, we compare the mean FPT probability and survival
probability from the exact solution with those from the Monte

Carlo simulations. Fig. 3 Left shows several distributions of the
FPT probability computed from the exact solutions (solid lines)
and those computed from the stochastic simulations (broken
lines) with the same parameters; Fig. 3 Right shows the corre-
sponding survival probabilities from the exact solutions (red
broken lines) and those from simulations (crosses). These sim-
ulation results agree very well with the exact solutions.

An exact solution can be found not only for the steady state
distribution but also for the dynamics away from the steady
states. Table 1 shows the occupancy probability distribution at
time t � 50 s when the network is far from the steady state. The
difference between the exact solution and simulation is �2%,
which is essentially the sampling error. Fig. 4 further explores the
network dynamics. For a network with size M � 5, the walker
initially resides in the C0 state (t � 0 s) but propagates to other
states by time t � 10 s and t � 50 s. Eventually the probability
reaches a steady profile. The last time shown, t � 1,500 s, is much
later than the mean FPT, 180 s.

We can also compare the model’s predications with laboratory
experiments carried by Dolmetsch et al. (27). These experiments
measure differential NFAT activation as a function of the
amplitude and duration of a calcium stimulus. Their work
uncovered three different response patterns of the nuclear
fraction of total NFATs that result from different stimulus (spike
followed by plateau, a single spike and a low-level plateau). In
Fig. 5, stimuli similar to experimentally used inputs (Fig. 5a) are
entrained to our model and are also shown to result in three
response patterns (Fig. 5b). The predicted patterns agree well
with those seen in the experimental studies (Fig. 5b Inset).

An Optimal Forward Reaction Rate Favors the Passage. Many studies
have highlighted the efficiency, sensitivity, and robustness of
signal transduction networks (1, 4, 28). In this regard, the ladder
network exhibits an interesting property, the existence of an
optimal value for the forward reaction rates. Fig. 6 shows the
mean, the most probable, and the root-mean-square of the FPT
of a signaling protein from the C0 state to the UM. Clearly, there
is an optimal forward reaction rate for the passage: The optimum
occurs at �f 	 1 for the mean FPT, but the optimal values of �f
for the most probable and the root-mean-square passage times
are �2.

The existence of this optimum may seem to conflict with the
intuition that the higher enzyme concentration is, the shorter the
passage time is. When the forward reaction rates are very slow,
the forward reactions do indeed constitute a bottleneck. How-
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ever, with increasing forward reaction rates, the walkers will be
found more and more often in the signaling protein–enzyme
complex forms; this helps signaling proteins move toward de-
phosphorylated states. Eventually, when the forward reaction
rate is too large compared with the transportation rates k� and
k�, the signaling proteins will then spend most of their time in
the transport incompetent complex forms (C� i, Ĉi, U� i, or Ûi)
rather than in the apo forms required for transport. This
ultimately leads to slower transport between the cytoplasm and
the nucleus.

This intriguing phenomenon could also be qualitatively ex-
plained as follows. The passage time of a signaling protein from
the fully phosphorylated state in the cytoplasm (C0) to the fully
dephosphorylated state in the nuclear (UM) consists of two parts:
the time for dephosphorylation (Td) and the time for transport
(Tt). The typical time from site A to its neighbor B can be
estimated by adding the inverse rates using the ‘‘one-step-
forward’’ approximation. Assuming there are total l neighbors
Ci, i � 1, . . . , l (including B � Cj) that A can directly jump to
with rate ki, the typical time is ((kj��ki) � kj)�1. For each
dephosphorylation step from state i to i � 1, this estimate yields
a time (2�f � k�

i )��f
2 � (�b��c)��c

2. The total dephosphoryla-
tion time is Td � M � [(2�f � k��)��f

2 � (�b��c)��c
2], where k��

is the average of k�
i values. The transport time from Ci to Ui can

be approximated as (2�f � k�
i )�k�

i2 based on similar approxima-
tions. Because the transport could happen in any Ci state, the
mean transportation time requires averaging over all i, which
results in a time Tt � (2�f � k��)�k��

2 . The total mean passage time
can therefore be approximated as

T � �M
2�f � k��

�f
2 �

�b � �c

�c
2 � �

2�f � k��

k��
2 �. [7]

The existence of an optimal forward reaction rate requires the
existence of a solution to the equation �T���f � 0 has solu-
tion(s). As a result, we must have the equation �f

3 � Mk��
2 �f �

Mk��
3 � 0. With the parameters shown in Fig. 6, the optimal

forward rate is estimated to be 0.49, which is comparable with the
exact solution (	1) as shown in Fig. 6.

Asymmetry of the Reaction Network Affects the Passage. Although
the ladder network is symmetrical in topology, the reaction rates
in the cytoplasm and nucleus are quite different owing to
different availabilities of appropriate enzymes. To illustrate the
effect of the network’s asymmetry on signal transduction, we
employ two parameters to probe this: the phosphorylation
asymmetry parameter and the transport asymmetry parameter.
The phosphorylation asymmetry parameter is defined as 	 �
a�f�af � a�b�ab � a�c�ac � b�f�bf � b�b�bb � b�c�bc, where 	 
 1, which
characterizes the preference for undergoing dephosphorylation
compared with the phosphorylation processes in the different
environments. The other parameter, transport asymmetry pa-
rameter �, is defined as � � af�bf � ab�bb � ac�bc � a�f�b�f �
a�b�b�b � a�c�b�c, which characterizes the relative activities of
reactions in the cytoplasm compared with the corresponding
reactions in the nucleus.

Fig. 7 illustrates the effects of these asymmetries on the
network behavior. Fig. 7 Left shows that increasing the phos-
phorylation asymmetry slows down signaling; Fig. 7 Right shows
that increasing the transport asymmetry speeds up signaling.

The FPT Distribution Has a Long Tail. The probability distribution of
the FPT has a long tail due to the network’s hierarchical
structure. In the limits of either large or small forward reaction
rates, the probability distribution is very flat and the tail can be
extremely long.

With the long-tail distribution, the mean FPT can be greatly
different from the most probable FPT. In Fig. 3, the most probable
FPTs for �f � 0.5, 0.2, 0.1 are 40, 60, and 100 s, respectively.
However, the ratio of the mean FPT and the most probable FPT
ranges from on the order of 1 to the order of 3 with the chosen set
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Fig. 6. An optimal forward reaction rate �f favors efficient passage. The
horizontal axis is the forward reaction rate swept from 0.05 to 50. The three
curves represent the mean FPT, the root mean square FPT, and the most
probable FPT according to the forward rate �f. Other parameters are fixed as
the phosphorylation site number M � 5, the forward reaction rates ��f � �f �
��f � �f, the backward rates ��b � �b � ��b � �b � 1.0, the catalyzed rates ��c �
�c � ��c � �c � 1.0, the transport rates k�

M � k�
0 � 0.2, and the ratio of transport

rates �� � �� � 2.718.
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Fig. 7. Effect of the asymmetry of the reaction networks to the passage time. (Left) A plot of characteristic times as functions of the parallel asymmetry
parameter 	. The other parameters are fixed at the phosphorylation site number M � 5, the forward reaction rates �f � �f � 0.2, the backward rates �b � �b �
1.0, the catalyzed rates �c � �c � 1.0, the transport rates k�

M � k�
0 � 0.2, and the ratio of transport rates �� � �� � 2.718. (Right) The plot of characteristic times

as functions of rung asymmetry parameter �. The other parameters are fixed at M � 5, ��f � ��f � 0.2, ��b � ��b � 1.0, ��c � ��c � 1.0, k�
M � k�

0 � 0.2, �� � �� �
2.718.
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of parameters. Fig. 6 shows that the ratio of the most probable FPT
and mean FPT is large even on a logarithm scale.

Conclusions and Discussions
In this paper, we studied a general signal transduction network-
reaction ladder network that models multiple-site phosphoryla-
tion and cytonuclear transport. As often happens for real
networks, the enzymes are assumed to be abundant, and so each
signaling protein independently wanders through its various
states of phosphorylation and location in compartments. Except
for the last binding step, the network is effectively linear and
therefore can be solved exactly. This exact solution is confirmed
by using the Monte Carlo simulation. Even this simple network
exhibits several interesting stochastic features. It exhibits a long
tail of the probability distribution for the signaling time and there
is an optimal forward reaction rate that favors speedy signaling.

This optimum suggests there may be an optimal amounts of
enzymes for efficient signal transduction.

When available enzymes are not abundant, the random walk-
ers on the network become correlated because they must share
the limited resources of available enzymes. Nonlinearity then
starts to play an important role throughout the process not just
in the acquiring last step of the final target. In this situation when
an enzyme is bound, several phosphorylation or dephosphory-
lation events will occur before unbinding, similar to the proces-
sive aspect of transcription (29). It will be interesting to study
such scenarios and to study the effects of oscillatory upstream
signaling molecules on the network. These will help us further
understanding the phenomenology and quantitative design cri-
teria of effective signal transduction mechanisms.
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