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A bottom-up approach to gene regulation
Nicholas J. Guido1*, Xiao Wang2*, David Adalsteinsson3, David McMillen5, Jeff Hasty6, Charles R. Cantor1,
Timothy C. Elston4 & J. J. Collins1

The ability to construct synthetic gene networks enables experi-
mental investigations of deliberately simplified systems that can
be compared to qualitative and quantitative models1–23. If simple,
well-characterized modules can be coupled together into more
complex networks with behaviour that can be predicted from that
of the individual components, we may begin to build an under-
standing of cellular regulatory processes from the ‘bottom up’.
Here we have engineered a promoter to allow simultaneous
repression and activation of gene expression in Escherichia coli.
We studied its behaviour in synthetic gene networks under
increasingly complex conditions: unregulated, repressed, acti-
vated, and simultaneously repressed and activated. We develop a
stochastic model that quantitatively captures the means and
distributions of the expression from the engineered promoter of
this modular system, and show that the model can be extended
and used to accurately predict the in vivo behaviour of the network
when it is expanded to include positive feedback. The model also
reveals the counterintuitive prediction that noise in protein
expression levels can increase upon arrest of cell growth and
division, which we confirm experimentally. This work shows
that the properties of regulatory subsystems can be used to predict
the behaviour of larger, more complex regulatory networks, and
that this bottom-up approach can provide insights into gene
regulation.
We engineered the OROlac promoter in E. coli as a tool for

investigating the interactive effects of positive and negative transcrip-
tional regulation. The basis for the engineered promoter is the PRM

promoter of bacteriophage l. In the native promoter, the operator
sites OR1 and OR2 cooperatively bind the l repressor protein, CI,
which in turn acts as a transcriptional activator by recruiting RNA
polymerase24. In the engineeredOROlac promoter, the third operator
site of the native PRM promoter, OR3, was mutated to significantly
reduce CI binding, thereby removing the repressive function of this
site. A lac operator, which can bind the repressor protein LacI, was
placed upstream of OR1. The result is a promoter that can be
repressed by LacI and activated by CI; it thus enables the combined
effects of repression and activation to be investigated.
We inserted the OROlac promoter in a high-copy plasmid that

lacked the cI activator and lacI repressor genes to create an unregu-
lated system (Fig. 1a), to establish the promoter’s basal properties.
The green fluorescent protein gene (gfp) was placed under the control
of theOROlac promoter as a readout for transcriptional induction. A
repressor-only system was constructed by adding a strongly consti-
tutively expressed lacI gene, under the control of the PLtetO1
promoter, to the unregulated system (Fig. 1b). The LacI protein
binds to the lac operator as a tetramer, which reduces the binding of
the RNA polymerase, and may affect the binding of CI to its operator

site. When isopropyl-b-D-thiogalactopyranoside (IPTG) is added to
the media, it binds to the LacI tetramer and weakens binding of the
LacI protein to the Olac operator site. This allowed us to tune the
degree of OROlac repression. An activator-only system was con-
structed by adding the cI gene under the control of the pBAD
promoter, which is activated by arabinose (Fig. 1c). The CI protein
forms a dimer that binds sequentially and cooperatively to the OR1
and OR2 sites of the OROlac promoter. Finally, both repression and
activation, as implemented in the individual modules above, were
placed together on one plasmid, to create a repressor–activator
system (Fig. 1d).
A mathematical model was developed to account for the in vivo

behaviour of this modular system, initially using equilibrium
modelling of the underlying biochemical reaction scheme to capture
the mean transcriptional response of the three regulated systems: the
repressor-only, activator-only and repressor–activator systems.
These considerations allow us to derive explicit expressions for the
probabilities of each of the six binding states as a function of the
inducer levels (see Supplementary Information). These expressions
were globally fitted to the transcriptional induction data using the
unregulated system as a baseline, leading to the mean fluorescence
results (blue lines) shown in Fig. 1f–h.
The deterministic model was then extended to include stochastic

effects25. Preliminary investigations with the stochastic model
revealed that fluctuations in the concentrations of transcription
factors have very minor effects on the variability in the expression
levels of the GFP reporter protein. Therefore, synthesis, degradation,
andmultimerization of CI and LacIwere not included in our baseline
model. All stochastic modelling was carried out using the BioNetS
software26, which uses a highly optimized version of the Gillespie
Monte Carlo algorithm. To create the distributions of the GFP
reporter protein, synthesis and degradation of GFP messenger
RNA and protein were tracked explicitly. To include cell growth
and division in the model, the cell volume was treated as a random
variable that undergoes exponential growth26 with a mean doubling
time of 20 minutes, as observed in the experimental system. At cell
division, the volume is halved and the mRNA and GFP molecules
are divided between daughter cells on the basis of a binomial
distribution21.
Because the plasmid used in our experimental system has a high-

copy ColE1 origin of replication, intercellular copy-number varia-
bility can be large27. Rather than model the complex copy-number
control system explicitly, we assumed a gamma distribution at the
time of cell division (see Supplementary Information). Themeanwas
assumed to be 50 plasmid copies per cell28. The variance was adjusted
so that the model accurately captures the fluctuations in GFP levels
observed in the activator-only system, and then kept at this value
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when the repressor-only and repressor–activator systems were
considered. Comparison of the experimental results and the stochas-
tic simulations in Fig. 1e and Fig. 1i–k shows that the model can
accurately capture the in vivo behaviour of the unregulated system
and all three regulated systems.
The coefficients of variation (CVs) of the three regulated systems

are shown in the insets of Fig. 1f–h. As can be seen, the stochastic
model slightly underestimates the experimentally observed variabil-
ity. This discrepancy of approximately 0.1 in CV for each system is
largely due to the model’s inability to capture the long tails that
extend into high fluorescence levels in the experimental flow cyto-
metry histograms, and indicates that our relatively simple model
does not account for all sources of variability. For example, while the
model includes extrinsic noise5 that arises from cell growth and
division and fluctuations in plasmid copy number, it does not account
for cell-to-cell variability in the transcriptional and translational
machinery.
An important test for any mathematical model is its ability

to predict the outcome of novel experiments. We designed and
conducted several new experiments on the basis of the model’s

predictions. First, the stochastic model results revealed that a large
amount of the variability in GFP levels is attributable to fluctuations
in the plasmid copy number. To test this prediction, we placed the
repressor–activator system on a low-copy plasmid that is tightly
regulated, maintaining 3–4 copies of the plasmid per cell28. Experi-
ments were then conducted using both arabinose and IPTG as an
inducer, and as expected, the cells with the low copy number showed
reduced expression levels. In the stochastic model, the plasmid copy
number was fixed at three, and the concentration of LacI was
proportionally reduced to reflect this change. The functional
relationship between arabinose level and CI concentration was
taken to be the same in the low-copy case as in the high-copy case,
to match our experimental observation that reducing the plasmid
copy number did not affect the shape of the system’s arabinose
response curve (see Supplementary Information). No additional
changes were made to the model. As seen in Fig. 2, the experimental
distributions for GFP expression levels closely match those predicted
by the model, indicating that the model accurately captures fluctu-
ations in expression levels that are attributable to varying plasmid
copy number.

Figure 1 | Unregulated, repressor-only, activator-only and repressor–
activator systems on high-copy plasmids. Schematic designs, experimental
data and model data are shown. a, The unregulated system with the
engineered OROlac promoter controlling the reporter gfp. The white boxes
in the OROlac promoter represent the operator sites at which CI and LacI
proteins bind. The red cross at OR3 represents the point mutation that
reduces CI binding at that operator site. b, The repressor-only system
consists of the PLtetO1 constitutive promoter controlling lacI and the
OROlac promoter controlling gfp. c, The activator-only system consists of
the pBAD promoter controlling cI and the OROlac promoter controlling gfp.
d, The repressor–activator system represents a combination of the
repressor-only and activator-only systems. e, Histograms of the unregulated
system: experimental data (red) and stochastic model data (blue). The x axis
represents arbitrary fluorescence units from flow cytometry, and the y axis
represents the frequency of cells producing the corresponding fluorescence
level. f, Repressor-only system results: GFP expression represented as

normalized fluorescence versus IPTG level; red circles are experimental data
and the blue lines are the results of the deterministic model. The inset shows
CV versus IPTG level: experimental data (red) and stochastic model data
(blue). g, Activator-only system results: normalized fluorescence versus
arabinose level, with an inset showing CV versus arabinose level.
h, Repressor–activator system results: normalized fluorescence versus
arabinose level. The inset shows CV versus arabinose level, with 10 mM
IPTG in each case. i, Histograms of normalized cell counts versus arbitrary
fluorescence units, of experimental data (red) and stochastic model data
(blue) for the repressor-only system. The solid lines in the histograms are the
results for no inducer (IPTG in this case) and the dashed lines are the results
for the highest level of IPTG. j, Histograms (as above), showing results for no
inducer (solid lines) and the highest level of arabinose (dashed lines) for the
activator-only system. k, Histograms (as above), showing results for no
arabinose (solid lines) and the highest level of arabinose (dashed lines), with
10 mM IPTG in each case for the repressor–activator system.
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The insets of Fig. 2b and d show a comparison of the CVs for the
experimental and model results. The model accurately predicts
the behaviour of the CV for the low-copy case, taking into account
the 0.1 discrepancy discussed above. At very low inducer levels,
the model predicts a larger CV than is observed experimentally.
We attribute this discrepancy to autofluorescence in the experi-
mental system. This has the effect of artificially increasing the

mean fluorescence, thereby decreasing the CV. The effect is only
important at low fluorescence levels, where autofluorescence makes
up a significant portion of the measured mean value.
To test the model’s predictive power in a more complex system, we

added positive feedback to the repressor–activator system. To
accomplish this, we expanded the system so that the cI gene was
transcribed polycistronically with gfp under the control of theOROlac

promoter (Fig. 3a). Adding feedback to the stochastic model requires
the explicit inclusion of the CI mRNA and protein molecular
abundances and the biochemical processes that affect their levels
(synthesis, degradation, multimerization). The parameters that
control these processes were chosen so that in the absence of
feedback the expanded model produced CI protein levels identical
to that of the simpler model (see Supplementary Information). As
can be seen in Fig. 3b–g, the agreement between the behaviour
predicted by the model and the experimental results is very good,
validating the bottom-up approach to understanding gene regulatory
networks.
We also used the model to conduct a systematic analysis of how

the different sources of noise contribute to the overall variability
(Supplementary Fig. 7). Surprisingly, we found that if we run
simulations with no cell growth or division using an ensemble of
cells with varying plasmid copy number, the CV increases above the
level at which cell growth and division proceed normally. This result
was unexpected, because cell growth and division are generally
thought to add variability to expression levels. A theoretical expla-
nation of this counterintuitive prediction is provided in the Sup-
plementary Information. In very general terms, this phenomenon
can be understood as follows: in a population of cells with varying
plasmid copy number, the intercellular variability increases as
expression levels increase from new protein synthesis. Cell division
not only limits the mean protein level, it also causes the distribution
to be more tightly centred about the mean (Supplementary Fig. 8).
This leads to an overall reduction of the variability in protein
expression for the high-copy system where plasmid copy-number
fluctuations account for a significant portion of the noise. In

Figure 2 | Histograms of model data (blue lines) and experimental data
(red lines) for the repressor–activator system on a low-copy plasmid. The
x axis represents arbitrary fluorescence units from flow cytometry, and the
y axis represents the frequency of cells producing the corresponding
fluorescence level for: a, 1 £ 1026% arabinose, no IPTG; b, 5 £ 1024%
arabinose, no IPTG; c, 1 mM IPTG, no arabinose; d, 50 mM IPTG, no
arabinose. The inset in b shows CV versus arabinose level, and the inset in d
shows CV versus IPTG level; model data (blue lines) and experimental data
(red lines).

Figure 3 | Repressor–activator system with positive feedback.
a, Schematic of the positive feedback construct, where the cI gene is added to
the repressor–activator system on a high-copy plasmid. The cI gene is
incorporated, along with gfp, in a polycistronic region controlled by the
engineered OROlac promoter. Model predictions and experimental results
for the repressor-activator system with positive feedback: b, Normalized
mean (arbitrary fluorescence units) versus arabinose level, where the red
circles are experimental data and the blue diamonds are model predictions.
The inset shows CV versus arabinose level. c, Normalized mean versus IPTG

level, with an inset showing CV versus IPTG level. d, Normalized mean
versus arabinose level, with 50 mM IPTG in each case, with an inset showing
CV versus arabinose level for 50 mM IPTG. e, Histograms, normalized cell
counts versus arbitrary fluorescence units, of experimental data (red) and
model predictions (blue) for 0.0001% arabinose. f, Histograms of
experimental data (blue) and model predictions (red) for 50 mM IPTG.
g, Histograms of experimental data (blue) and model predictions (red) for
0.0001% arabinose and 50 mM IPTG.
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contrast, for the low-copy case where plasmid copy number is tightly
controlled, the model predicts that cell growth and division should
not reduce noise levels and instead, halting cell growth and division is
expected to decrease the variability.
We considered ways to experimentally test these model predic-

tions. Most methods of achieving arrest of cell growth and division
(such as addition of the drug cephalexin29) cause drastic changes in
cell morphology or protein production, both of which would be
detrimental to our experimental design. We found cell behaviour
in minimal media to be the best approximation of our model
conditions. In minimal media, cell growth and division slow
considerably, while protein overproduction from plasmids can
continue.
Cells were placed in M9 minimal media and 2% glucose with

incubator conditions identical to those in the rich media experi-
ments. Our model predicts that the variability in protein expression
levels can increase if cells with the repressor–activator system on a
high-copy plasmid do not grow or divide (Fig. 4a). The results in
Fig. 4b show that the cells in minimal media with high-copy plasmids
do in fact have a higher CV than those that are growing and dividing
regularly in rich Lauria broth (LB) media. Additionally, our model
predicts that the variability in expression levels for the low-copy case
decreases when cell growth and division are stopped (Fig. 4c). This
effect is validated experimentally in Fig. 4d where the results show
that cells with low-copy plasmids in minimal media have lower CVs
than similar cells growing and dividing in rich media. (See Sup-
plementary Information for similar results with stationary phase
cells.)
Previous work in synthetic biology1–23 has shown that one can

develop a mathematical model for a given synthetic gene network
and use the model to describe the behaviour of that network. These
efforts set the stage for the possibility of using quantitative models of
regulatory subsystems to predict the behaviour of larger, more
complex regulatory networks, one of the main goals of synthetic
biology. In this study, we show that such a bottom-up approach is
indeed achievable and can lead to insights and testable predictions
that are biologically meaningful. Specifically, we show that we can fit

a stochastic model to experimental data from a modular, synthetic
gene network, and then extend the model and use it to predict
quantitatively the behaviour of a more complex network involving
regulatory feedback. The model also accurately predicted the effects
of changing plasmid copy numbers on the experimentally observed
levels of variability in GFP expression and suggested that halting cell
growth and division in cells with high-copy plasmids should increase
fluctuations in protein expression, which was confirmed experimen-
tally. This synthesis of theory and experiment has much to offer in
investigations of cellular behaviour, and such approaches may
eventually allow us to assemble a genuine bottom-up picture of the
intricate processes of gene regulation.

METHODS
Plasmid construction. Plasmid construction began with the pZE21-MCS1
modular construct of Lutz and Bujard28. This plasmid backbone contains the
PLtetO1 promoter, T1T2 terminator, kanamycin resistance gene, ColE1 origin of
replication and multiple cloning sites. The low copy origin of replication was
from the pZS*24-MCS1 plasmid28. To create theOROlac promoter, theOR region
of bacteriophage lwas altered with the G-to-Tor3-r2 pointmutation in theOR3
operator site24 (greatly reducing its affinity for the CI protein), and an Olac

operator site was added upstream of the OR region. The promoter sequence is
shown in Supplementary Fig. 12. The point mutation and operator insertion
were carried out by polymerase chain reaction (PCR; using PfuTurbo DNA
polymerase from Stratagene and an MJ Research PTC-100 thermal cycler) with
primers designed such that the point mutation and operator site were placed in
the primers.

The lacI gene was PCR-amplified, with PfuTurbo and anMJ Research thermal
cycler, from pTrc99a, the clts and OR region were from pGW7 (ATCC), the
gfpmut3 was from pJBA111 (J. B. Andersen, Technical University of Denmark),
and the pBAD promoter was from pBADHisA (Clontech).
Cell growth and expression experiments. All plasmids were inserted into the
E. coli strain JM2.300 (2l, lacI22 rpsL135 (StrR), thi-1) via the transformation
and storage solution heat-shock transformation protocol30. Cells for experi-
mentationwere grown overnight and cultures were inoculated 1:300 in LBmedia
and with 0.03mgml21 kanamycin antibiotic. Varying levels of IPTG and
arabinose were added separately and in combination to affect the behaviour of
the inducible promoters. Cultures were grown in a 37 8C incubator shaking at
300 r.p.m. for approximately three hours, at which point the cells reached a
steady state (see Supplementary Information), and the absorbance at 600 nm
(A600 nm) was between 0.3 and 0.4. The minimal media cultures used the same
conditions as LB cultures except that the minimal media cultures were grown in
M9 minimal media with 2% glucose.
Data acquisition and analysis. Culture samples were spun down at 8,000 r.p.m.
to pellet cells, and supernatant was removed. The samples were then resuspended
in 0.75ml of 1 £ PBS, and fluorescence measurements were taken via flow
cytometry. The Becton Dickinson FACScalibur flow cytometer was used to
measure 50,000 cells of each sample from a culture representing one level of
inducer. Excitation of GFP was achieved via a 488-nm argon excitation laser
and fluorescence measured with the 515–545 nm emission filter. The flow
cytometer generates logscale values using a 10-bit analogue-to-digital converter,
yielding integers in the range 0 to 1,023 for each of three measurements:
fluorescence intensity, forward-scattering, and side-scattering. Cells were col-
lected within a small forward-scatter and side-scatter gate, in the Cellquest
software designed by BD Biosciences, to minimize fluorescence variation due to
cell size.
Modelling and stochastic simulations. The model parameters were estimated
using Matlab’s least-squares fitting routine. The mean expression levels were
fitted to the repressor-only, activator-only and repressor–activator system
results. To initialize the least-squares routine, we used 2,000 random initial
guesses for the model parameters, generated from a uniform distribution within
a biologically reasonable regime of parameter space. A discussion of the
sensitivity of the model’s output to the values of the parameters is given in the
Supplementary Information. The best parameter set was chosen from those
2,000 runs. All the fits were based on data normalized to the mean GFP
expression level of the unregulated system. All stochastic simulations were
done in BioNetS26 using the Gillespie algorithm. See Supplementary Information
for details.
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