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We study the behavior of globally coupled ensembles of cyclic stochastic three-state units with
transition rates from i� 1 to i proportional to the number of units in state i. Contrary to mean-field
theory predictions, numerical simulations show significant stochastic oscillations for sufficiently large
coupling strength. The order parameter characterizing units synchrony increases monotonically with
coupling while the coherence of oscillations has a maximum at a certain coupling strength. We find the
exact formulas for the stationary probability distribution and the order parameter.
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Interacting stochastic systems emerge in a variety of
physical and biological contexts, from arrays of
Josephson junctions [1] and lasers [2] to neural networks
[3,4] and gene regulatory networks [5,6]. While the dy-
namics of individual elements can be rather complicated
and nongeneric, large ensembles of coupled units often
exhibit universal behavior. Therefore, studies of canonical
models with simple individual dynamics and interaction
rules have proven very useful for understanding the behav-
ior of specific systems. Well-known examples of such
canonical systems are the Desai-Zwanzig model [7] of
coupled bistable systems and the Kuramoto model [8] of
coupled phase oscillators. The Kuramoto model and its
many variations and generalizations (see [9]) have been
very successful in describing the transition to coherent
oscillations in ensembles of coupled phase oscillators.
Stochastic dynamics of individual elements in such models
are described by coupled nonlinear Langevin equations. In
the thermodynamic limit, they can be reduced to low-
dimensional deterministic equations for the mean field or
the order parameter characterizing global behavior of large
systems.

A simpler way of describing interacting stochastic sys-
tems incorporates stochastic elements with a discrete set of
states with certain transition rates. It is most often done for
bistable systems which are replaced by two-state stochastic
systems with suitably chosen transition rates. For example,
array-enhanced stochastic resonance has been studied in a
system of globally coupled two-state systems [10]. A
transition to regular oscillations in an ensemble of two-
state systems coupled through a delayed mean field was
studied in [11].

Recently, Prager et al. [12] introduced a globally
coupled three-state stochastic ‘‘oscillators’’ with unidirec-
tional (1! 2! 3! 1) transitions as a paradigmatic
model of noise-driven excitable systems. This model is
simple enough to make analytical and large-scale numeri-
cal studies of large systems feasible [12,13]. An important
property of globally coupled systems is their behavior in
the thermodynamic limit, when the number of units ap-

proaches infinity. According to the standard mean-field
description, this behavior depends on the specific form of
coupling among oscillators: in certain cases [13] the en-
semble may exhibit a transition to sustained oscillations
(Hopf bifurcation) for strong enough coupling, and in some
others [12] this transition is absent.

In this Letter we focus on the seemingly ‘‘less interest-
ing’’ situation when a globally coupled ensemble of three-
state systems does not exhibit a Hopf bifurcation in the
thermodynamic limit. However, we find that in any finite-
size system, quasiregular oscillations of the mean field are
present. We introduce the coherence parameter which
characterizes regularity of mean-field oscillations, and
the order parameter which characterizes the degree of
synchrony among the oscillators. We show that while the
order parameter increases monotonically with the coupling
strength, the coherence parameter has a maximum at a
certain intermediate coupling strength. The simplicity
and a high degree of symmetry in the system under study
allow us to find the statistical properties of the finite
ensemble analytically; however, we expect similar behav-
ior in ensembles of more general cyclic stochastic systems
at strong enough coupling which do not exhibit Hopf
bifurcation in the thermodynamic limit.

A single stochastic three-state unit with unidirectional
transitions is schematically shown in the inset to Fig. 1(b).
We assume that in an isolated unit all three transitions from
state i (i � 1; 2; 3) to state i� 1�mod3� are Markovian
with identical rate a [14] Without loss of generality we
take a � 1. Statistical properties of this system have been
investigated in Ref. [12]. The cyclic behavior of a single
oscillator is characterized by the mean time T of an oscil-
lator to return to the initial state after an excursion through
the other two states. Since the mean time of switching from
state i to state i� 1 is Ts � 1, we get T � 3Ts � 3. The
probability for a system to be in state i � 1; 2; 3 at time t is
given by the continuous-time master equation

 

_P i � �Pi � Pi�1; i � 1; 2; 3�mod3�: (1)
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This master equation has a fixed point Ps1 � Ps2 � Ps3 �
1=3 corresponding to equipartition among the three states,
and three eigenvalues �k � �1� e2i�k=3, k � 0; 1; 2. The
first eigenvalue (k � 0) corresponds to the conservation of
the total probability, and the other two describe equilibra-
tion of the probability distribution among the three states.
Imaginary part of these eigenvalues implies that there are
decaying periodic oscillations of deviations from equipar-
tition with the mean frequency ! �

���
3
p
=2.

Globally coupled three-state oscillators.—Now let us
consider an ensemble of N identical three-state oscillators.
The specific mechanism of coupling is the following. We
assume that the probability �i;i�1 of switching of an oscil-
lator from a state i to state i� 1 at time t is linearly
proportional to the number of oscillators ni�1�t� already
at state i� 1 at time t, with the proportionality constant
b (which we call coupling coefficient), �i;i�1�t� �
1� bni�1�t�. This type of coupling is reminiscent of the
autocatalytic transitions in gene regulatory circuits when
multiple copies of a single gene are present in the cell.

Since this model is Markovian, it can be efficiently
simulated using Gillespie algorithm [15]. Figure 1 shows
sample stochastic trajectories for the occupation number of
oscillators in states 1,2, and 3 as a function of time for
different values of coupling parameter b for N � 1000.
The initial condition for all cases is n1�0� � N, n2;3�0� �
0. For b � 0, the population slowly drifts toward an equi-
librium state with n1 � n2 � n3 � N=3 with O�N1=2� sto-
chastic fluctuations. For even very small nonzero b� 1,
noisy oscillations around the mean become visible. As b
grows, the period becomes shorter, and the amplitude of
oscillations grows until for b� 1 it approaches N; i.e.,
almost all oscillators are simultaneously in the same state.
At large b� 1, the system exhibits switching behavior
resembling the dynamics of a single oscillator. It is easy to
understand: at very large b, once a single oscillator makes a
transition from state i to state i� 1 (which occurs with rate
N), all other oscillators quickly follow. So indeed in the
limit b� 1 the dynamics of the ensemble becomes
equivalent to the dynamics of a single oscillator with a

rescaled transition rate N; a result confirmed by analytical
calculations [16].

We computed the power spectrum of the time series of
the occupation numbers and determined the central fre-
quency ! and the half-width �! of the spectral peak. We
call the ratio CP � !=�! the coherence parameter.
Figure 2(a) shows !, �!, and CP as functions of the
coupling parameter b. Both ! and �! increase with b;
however, the coherence parameter has a distinct maximum
at a certain b which decreases with N; see Fig. 2(a). Thus,
we observe a manifestation of the coherence resonance
[17]; however, the difference is that the maximum appears
not at a certain noise strength but a certain value of the
coupling.

This coherence resonance should not be confused with
synchronization among the oscillators. The degree of syn-
chronization can be characterized by the order parameter

 R �
�
N�1

��������
XN
j�1

ei�j

��������
2
�
; (2)

with discrete phases of oscillators �j � 2�k=3, k � 1, 2,
3. This order parameter was introduced by [13] by analogy
with coupled continuum phase oscillators in the Kuramoto
model [8]. The order parameter is zero when all oscillators
are equally distributed among the three states (n1 � n2 �
n3 � N=3), and it approaches unity if all oscillators are
perfectly synchronized, so all of them are simultaneously
in the same state. As expected, the order parameter in-
creases monotonically with b; see Fig. 2(b). As Fig. 2(b)
shows, the order parameter for a given b is independent of
the number of oscillators in population N.

Mean-field approximation.—In the thermodynamic
limit N ! 1 of globally coupled oscillators, the mean-
field equations for the deterministic ‘‘concentrations’’ of
oscillators xi � ni=N are given by
 

_xi � xi�1�1� bNxi� � xi�1� bNxi�1�;

i � 1; 2; 3�mod3�: (3)

From the symmetry of the underlying dynamics it imme-
diately follows that the fixed point of this system is x1 �
x2 � x3 � 1=3. The associated two complex eigenvalues
(the first eigenvalue is 0 as before because of the conser-
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FIG. 2 (color online). Gillespie simulations of coupled sto-
chastic oscillators: coherence parameter CP � �!=! (a) and
order parameter R (b) vs. b for N � 102, 103, 104. Solid line in
(b) is (8). Inset: frequency ! and bandwidth �! vs b.
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FIG. 1 (color online). Time series of the instantaneous occu-
pation numbers oscillators n1, n2, n3 in states 1, 2, 3, respec-
tively, for N � 1000, and different values of the coupling
parameter: (a) b � 0, (b) b � 0:1 (Inset: Transition diagram in
a single unit); (c) b � 1, (d) b � 10.
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vation law) �2;3 � �
3
2	 i

���
3
p
�12�

bN
3 � always have nega-

tive real part, which indicates the absence of Hopf bifur-
cation at any coupling b. This is in contrast with the model
by Wood et al. [13], in which a different form of coupling
was proposed (the transition rate from i to i� 1 was an
exponential function of the linear combination of ni	1, ni),
for which the mean field had a Hopf bifurcation at large
enough coupling strength [18].

Stochastic description.—The full description of the sto-
chastic properties of the system is given by the master
equation for the probability p�n1; n2; n3� that at time t there
are n1 oscillators at state 1, n2 at state 2, and n3 at state 3
(obviously, n1 � n2 � n3 � N),
 

_p�n1; n2; n3� � �n1 � 1�
1� b�n2 � 1��

� p�n1 � 1; n2 � 1; n3� � �n2 � 1�

� 
1� b�n3 � 1��p�n1; n2 � 1; n3 � 1�

� �n3 � 1�
1� b�n1 � 1��

� p�n1 � 1; n2; n3 � 1�

� 
N � b�n1n2 � n2n3 � n3n1��

� p�n1; n2; n3�: (4)

The total number of states (n1, n2, n3) in this system is
�N � 2��N � 1�=2. It is convenient to depict the state space
as a triangular grid; see Fig. 3(a).

According to the Frobenius-Perron theorem, the master
equation has a unique stationary solution. We were able to
find the exact solution in a closed form,

 ps�n1; n2; n3� � Cb
G�b; n1�G�b; n2�G�b; n3�

n1!n2!n3!
; (5)

where G�x; n� �
Qn�1
k�0�1� kx� and Cb is the normaliza-

tion constant, which can be verified by direct substitution.
Expression (5) shows that the stationary solution is not
only invariant with respect to cyclic permutations but also
with respect to any permutation of coordinates (n1, n2, n3).
This property is remarkable because the equation itself
does not possess this symmetry.

It is easy to check by direct substitution that (5) satisfies
the relation

 �n3 � 1�
1� b�n1 � 1��ps�n1 � 1; n2; n3 � 1�

� n1�1� bn3�ps�n1; n2; n3� (6)

and two other relations obtained from (6) by cyclic permu-
tations (adding these 3 relations and using the rotation
symmetry gives the stationary master equation Eq. (4)
without the left-hand side).

It is straightforward to obtain convexity properties of the
stationary solution (5). Indeed, according to (6), we have
ps�n1 � 1; n2; n3 � 1�< ps�n1; n2; n3� iff 0< �n3 � 1�
n1��1� b�. If b < 1 (b > 1) the probability increases (de-
creases) when one moves one step to the right in the left
part of the triangular lattice and vice versa [19]. Combining
it with the rotation symmetry, we conclude that the distri-

bution is convex with a maximum in the center when b < 1
and concave with a maximum in the corners for b > 1; for
b � 1 the distribution is flat.

For zero coupling (b � 0), the stationary distribution is
trinomial

 ps�n1; n2; n3� �
N!

3Nn1!n2!n3!
;

which, of course, could be deduced directly since oscilla-
tors are independent and in the long term limit they become
uniformly distributed among the three states. The most
probable state is in the middle of the triangle (n1 � n2 �
n3 � N=3) and the least probable states are in the corners
(N, 0, 0), (0, N, 0), (0, 0, N).

For large b, the stationary distribution is highly localized
at the corners [Fig. 3(e)]. The dynamics close to equilib-
rium can be approximated by the probability flow around
the edges of the triangle, ignoring the influence of the inner
nodes. This simplification allows us to compute the non-

FIG. 3 (color online). (a) State space of the three-oscillator
system N � 3; Vertices correspond to distinct states (n1, n2, n3)
of the system, and arrows indicate transitions among the states.
Expressions at the arrows show the corresponding transition
rates. (b)–(e) Stationary probability distributions for N � 14
and b � 0:2 (b), b � 0:8 (c), b � 1 (d), b � 2 (e).
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zero eigenvalues of the full system in the first order in 1=b
[16]. For large b these eigenvalues are �kN �O�1=b2�,
k � 1, 2, where �k are the eigenvalues of the single oscil-
lator. Note that the equilibration rate Re���1;2N� is inde-
pendent of b.

For large n1, n2 and n3 one can use Stirling formula to
find an asymptotic expression for the distribution (5),

 ps�n1; n2; n3� � Cb�n1n2n3�
1=b�1 (7)

with Cb � ��3=b���3�1=b�N1�3=b. We can use this ex-
pression, replace summation by integration and compute
the order parameter for large N explicitly [20]. This
straightforward calculation results in a surprisingly simple
formula

 R �
b

b� 3
: (8)

This formula agrees very well with direct Gillespie simu-
lations [Fig. 2(b)]. Note that the order parameter is inde-
pendent of N (at least for large N). For arbitrary N, the
order parameter can be computed from the stationary dis-
tributions at zero coupling and large coupling, respectively.
For zero coupling, we get R � 1=N and for large coupling,
we have R! 1.

Discussion.—Our analysis indicates that the large sys-
tems of globally coupled three-state units exhibit signifi-
cant stochastic oscillations, and while the frequency of
these oscillations scales as N, their temporal coherence
reaches maximum at a finite b� 1 independent of the
number of oscillators. This result is counterintuitive, since
the mean-field theory predicts no sustained oscillations in
the thermodynamic limit N ! 1. The origin of this ap-
parent contradiction is that for large coupling strength,
nearly all oscillators are clustered in a single state, and
other states are nearly empty, thus giving rise to strong
stochasticity. For large b, all oscillators are strongly corre-
lated: as soon as the first one makes a transition, others very
quickly follow. This leads to the noisy but correlated and
thus athermal behavior of the globally coupled system at
large b. Of course, in any real system the transition rate
should saturate as N ! 1. Then eventually the thermal
behavior of the system would be recovered; however, in the
intermediate scaling regime of finite N the dynamics de-
scribed here can be observed.

Our analytical results are easily generalizable to the case
of arbitrary d-state oscillators with any d > 1. The order
parameter for d-oscillators is simply Rd � b=�b� d�. For
all d > 2, the coherence parameter reaches maximum at
b� 1. However, two-state systems (d � 2) are qualita-
tively different since for those the detailed balance condi-
tion is satisfied, and the probability current is zero. In this
case, the quasiregular oscillations are completely absent,
and the coherence parameter remains small O�1� for any b
(see [16] for more details).
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