
The study of gene regulation has undergone a transfor-
mation over the past decade owing to the maturation of 
new technologies and an increased interest in the topic 
among mathematical biologists. New assay techniques, 
particularly those involving DNA microarrays or fluo-
rescent proteins, have allowed researchers to quantify 
the relative levels of gene expression in cells and test 
mathematical models of gene networks in vivo. These 
technologies are at the heart of two new scientific dis-
ciplines, namely ‘systems biology’ and ‘synthetic biol-
ogy’, each of which takes a starkly different approach 
to the study of gene regulation1. Systems biologists take 
a top-down approach by studying entire large-scale 
gene networks with the goal of obtaining an integrated 
understanding of genomic function2–4. By contrast, 
synthetic biologists take a bottom-up approach by 
studying simplified gene networks consisting of just 
one or a few genes with the goal of uncovering the 
fundamental principles and mechanisms that govern 
gene regulation. The definition of synthetic biology is 
now very broad and includes general work on meta-
bolic and genetic engineering. Here, we use the term to 
refer to the original definition: the study of gene regula-
tion through the creation of mathematical models and 
simple de novo circuits. Although we focus on synthetic 
biology in this Review, systems and synthetic biology 
are connected by the belief that mathematical and com-
putational modelling will lead to a better understanding  
of gene regulation5.

Because synthetic biologists are more concerned 
with the intricacies of gene regulation, their models 
tend to include more details of molecular dynamics 

than those from systems biology. The ability to probe 
the dynamics of gene networks at the single-cell level 
is key to the synthetic biology approach. Systems- 
level effects that control whole genomes or even multi-
cellular and population-scale phenomena are important,  
but synthetic biologists take the stance that an under-
standing of the mechanisms underlying gene regulation 
is just as important and will aid our overall understand-
ing of phenotypic responses. To probe these small-scale 
interactions and mechanisms, some synthetic biology 
laboratories have begun using microfluidic ‘lab-on-a-
chip’ devices to trap single cells or small populations of 
cells for long-term data acquisition. Over the past dec-
ade, microfluidic devices have been used in a myriad of  
studies, and their use is not limited to the analysis  
of single-cell or even single-species phenomena. There 
are many good reviews on the design and manufac-
ture of microfluidic chips6–8, as well as on their use in  
biological settings9–14.

In this Review, we examine the ways in which micro-
fluidic devices can be used to examine intracellular 
signalling pathways and the dynamics of gene regula-
tion in bacteria, yeast and higher eukaryotes from the 
standpoint of synthetic biology. We discuss some of the 
various designs of microfluidic devices and the ways 
in which these chips can be used to create non-trivial 
environmental perturbations, such as time-dependent 
fluctuations and spatial gradients of media concentra-
tions. The ability to control the extracellular environ-
ment has allowed researchers to interrogate cellular 
signalling pathways and test mathematical models of 
gene regulation in new ways.
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Microfluidic devices for measuring 
gene network dynamics in single cells
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Abstract | The dynamics governing gene regulation have an important role in determining 
the phenotype of a cell or organism. From processing extracellular signals to generating 
internal rhythms, gene networks are central to many time-dependent cellular processes. 
Recent technological advances now make it possible to track the dynamics of gene networks 
in single cells under various environmental conditions using microfluidic ‘lab-on-a-chip’ 
devices, and researchers are using these new techniques to analyse cellular dynamics and 
discover regulatory mechanisms. These technologies are expected to yield novel insights 
and allow the construction of mathematical models that more accurately describe the 
complex dynamics of gene regulation.
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Intrinsic noise
Random, stochastic 
fluctuations in gene expression 
caused by a small number of 
reactants interacting in a finite 
volume.

Extrinsic noise
Fluctuations in gene expression 
that are not caused by intrinsic 
noise.

Time-lapse fluorescence 
microscopy
The repeated imaging of 
fluorescent markers using 
microscopy over a period of 
time, thus allowing a movie  
of the dynamics of gene 
expression or signalling 
networks to be obtained.

We begin by discussing conventional methods for 
quantifying fluorescent protein expression, such as flow 
cytometry and fluorescence microscopy, and their advan-
tages and disadvantages. We then introduce microfluidic 
devices and describe how they can be used to study gene 
network dynamics. One of the most important features of 
microfluidic devices is their ability to generate spatial and  
temporal perturbations in extracellular environments,  
and we discuss how this has led to new insights into cellu-
lar signalling. Finally, we briefly describe how these tools 
can be applied to studies beyond single cells.

Quantifying fluorescent protein levels in vivo
For synthetic biologists, the main tools for quantify-
ing gene activity in vivo are fluorescent proteins. These 
proteins can be used to measure gene activities by either 
placing them behind a promoter of interest or fusing 
them to a target protein. Since the discovery of GFp in 
1962 (REF. 15), a host of fluorescent protein variants16 have 
been developed, and their use has become widespread in 
various applications. A wide range of colours is available17, 
allowing the simultaneous measurement of two or more 
proteins. For instance, this technique was used by elowitz 
et al. to measure the relative contributions of intrinsic noise 
and extrinsic noise in gene expression18. In addition, by tag-
ging mRNA-binding proteins with fluorescent proteins, 
several groups have been able to track both the spatial and 
the temporal activity of transcripts19–22. Several effective 
tools are available for quantifying fluorescent protein lev-
els in cells; the most common of these are flow cytometry 
and fluorescence microscopy.

Flow cytometry. The most popular method for measuring 
the activities of fluorescent proteins in living cells has been 
flow cytometry, which is an easy-to-use, high-throughput 
method. using flow cytometry, researchers can quickly 
analyse hundreds of thousands of cells and generate a 
snapshot of the distribution of the activity of a gene in  
a population of cells. The major drawback of this method 
is that once a cell is measured, it is discarded. Therefore, 
the dynamics of gene activity in single cells cannot be 
ascertained. At best, time-lapse flow cytometry can  
be used to study the fluorescence distribution of a popu-
lation over time. This technique can be used accurately, 
especially if the cell population has been synchronized. 
For instance, Stricker et al. used time-lapse flow cytometry 
to measure the period of a synthetically constructed gene 
oscillator in a synchronized culture of Escherichia coli23. 
However, the synchronization of the culture does not last 
long because the noise inherent in gene expression18,24 
creates phase diffusion in the oscillators. Although each 
cell continues to oscillate, the relative timing among 
the members of the population becomes randomized 
after only a few oscillations. Thereafter, the dynamics 
of the population will no longer be measurable from 
any population average, and it will become necessary to  
measure time-lapse data from single cells.

Fluorescence microscopy. Another widely used techni que  
for quantifying gene activity is fluorescence microscopy. 
With this method, the fluorescence of individual cells 

can be quantified with great accuracy and with high 
enough resolution to determine the spatial distribution 
of fluorescence. The major drawback of fluorescence 
microscopy is that it cannot quantify the fluorescence of  
thousands of cells simultaneously, which is possible 
with flow cytometry. Therefore, fluore scence micros-
copy limits the accuracy of calculations that describe  
the fluorescence distribution of the population. 
However, fluorescence microscopy has a major advan-
tage over flow cytometry in that individual cells can be 
imaged multiple times for long durations, which allows 
time-lapse fluorescence measurements to be made that 
are not averaged over the population. When studying 
the dynamics of gene expression in single cells, this 
type of data is important.

Time-lapse fluorescence microscopy (TlFm) has 
become one of the preferred methods among synthetic 
biologists for studying the dynamics of intracellular sig-
nalling and gene networks25. The temporal expression 
data that can be obtained from TlFm are invaluable 
for the characterization and mathematical modelling 
of gene networks, especially those networks for which 
dynamic control is important. Dynamic models of 
gene regulation often suffer from a lack of knowledge 
of parameter values, and TlFm helps to put constraints 
on these models (BOX 1). In addition, recent work has 
shown that temporal correlations in gene expression 
can reveal the structure of the underlying regulatory 
network26 because autoregulatory motifs can help to 
determine the range of gene expression noise27.

However, there are still major limitations to TlFm. 
First, phototoxic and photobleaching effects28 limit the 
duration of excitation (reducing signal to noise ratios) 
and the frequency of image capture (reducing temporal 
resolution). Second, fluorescent proteins take time to 
mature before they are active and are stable once pro-
duced — both of these properties severely limit their 
dynamic range. These problems can be alleviated with 
the use of fluorescent proteins that are fast to mature29 or 
that are tagged with degradation sequences30–32. Finally, 
TlFm requires cells to remain almost motionless in the 
focal plane for long durations. The use of commercially 
available flow chambers can solve this problem, espe-
cially for mammalian cells that adhere to surfaces, and 
flow chambers for yeast cells are also now available33.

microfluidic devices are an increasingly popular, 
inexpensive and easy-to-use alternative that can be 
custom-designed to fit the needs of specific experi-
mental protocols. As we describe in the next few sec-
tions, microfluidic devices make it possible to trap cells  
for TlFm and to study the response of those  
cells to environmental perturbations at the level of a 
single cell and, increasingly, at the level of organisms  
and populations.

The rise of microfluidic devices
much of the early work involving microfluidics in 
biology focused on biochemical assays of small con-
centrations of DNA and proteins34–38. Since then, the 
complexity of microfluidic chips designed for this pur-
pose has grown quickly39. For example, devices have  
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been created that consist of an array of chambers that 
can be controlled individually using valves and switches 
and thereby allow biochemical experiments to be per-
formed in parallel40–42. The work of Quake and col-
leagues exemplifies this line of microfluidic research, 
creating integrated devices that allow the long-term 
analysis of cells in a microfluidic bio reactor43, the 
extraction of mRNA from single cells and the sub-
sequent synthesis of cDNA by pCR44, and the highly 
parallel measurement of transcription factor–DNA  
binding affinities45.

Some early chips were designed to mimic fluorescence- 
activated cell sorters46 or to otherwise manipulate the 

movements of cells on a chip47,48. However, to examine 
intracellular signalling and dynamic gene regulation, it is 
necessary to track individual cells through time. To this 
end, several groups have designed devices that trap either 
single cells or small populations of cells for long-term 
imaging49–54. Other groups have concentrated not just on 
trapping cells, but also on manipulating their environ-
ment. For instance, Whitesides and colleagues have cre-
ated a series of chips that can create spatial gradients in 
extracellular chemical concentrations55–57. Similarly, one 
can use microfluidic devices to create temporal changes 
in the growth medium, and this technique has been  
used in several recent studies33,58–60.

Box 1 | modelling the dynamics of gene networks

The mathematical modelling of gene regulatory 
networks began in the mid‑1970s with groundbreaking 
studies such as those by Glass and Kauffman110 and 
Savageau111. However, our recently acquired ability to 
create and probe gene networks has revealed that our 
understanding of the dynamic processes underlying 
gene regulation is incomplete. Dynamic data are  
crucial to understanding signalling networks because 
they constrain the possible parameters and network 
connections in ways that static (steady‑state)  
data cannot.

For example, consider the four situations depicted  
in the figure, each of which represents a simple gene 
network and its resulting dynamics following induction. 
The four networks are (a) simple constitutive 
production, (b) constitutive production with delay, (c) 
negative feedback and (d) negative feedback with delay. 
If flow cytometry were used to calculate the mean 
fluorescence of the reporter at the end of each run,  
this quantity would be the same for each of the four 
networks shown. This is true even for the fourth 
example, d, which depicts the dynamics of a delayed 
negative‑feedback oscillator112. Owing to intrinsic noise, 
each individual cell will have a randomized phase 
relative to the others. Therefore, the average 
fluorescence over the population of the oscillator will be 
phase‑averaged over the oscillation, resulting in a stationary mean similar to those in examples a–c. If one had access only 
to long‑term stationary data, many types of mathematical models would fit the data113; therefore, determining which type 
of model is the ‘correct’ model is nearly impossible in this situation.

Researchers have formulated various mathematical techniques for modelling the behaviour of gene networks114,115,  
and in some cases these models have revealed hidden network connections or accurately predicted qualitative 
behaviours60,116. However, many mathematical models do a poor job of predicting the dynamics, such as feedback and 
feedforward loops, of even simple gene networks that consist of one or two genes.

There are several reasons for this. First, the experimental techniques and quantifiable reporters needed to study the 
finer details of gene networks have only recently been developed. Second, there is a lack of knowledge of the parameter 
values, such as binding affinities and degradation rates, that are crucial for creating accurate dynamic models. Finally, 
there is a lack of specific knowledge about network components, such as network connections and reaction pathways.

The most popular mathematical models are mass action‑based systems of ordinary differential equations (ODEs).  
If the underlying chemical reactions of the network are known, then it is simple to write down the corresponding 
ODEs. Unfortunately, one rarely knows all of the chemical reactions that take place in a gene network, and the total 
number of all possible chemical reactions is overwhelming, even for ‘simple’ one‑ or two‑gene systems. For example, 
the process of producing one protein involves so many enzymes and sub‑steps that the resulting set of ODEs is 
extremely large. To alleviate this problem, theorists have created reduced models that, it is hoped, approximate the 
dynamics of the whole system117,118. There are known problems with these methods, such as stochasticity18,24,114,119,120, 
delay112,121–124 and timescale errors114,125,126, and it is as yet unknown when these errors are important and when they 
can be ignored. Despite this, dynamic, ODE‑based modelling has been used successfully to describe phenomena 
such as genetic toggle switches127, synthetic oscillations128, osmo‑adaptation signalling58 and metabolic responses to 
fluctuating environments60
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Bacterial persistence
Similar to antibiotic resistance, 
bacterial persistence is the 
phenomenon by which a 
fraction of a genetically 
homogeneous bacterial colony 
will survive antibiotic treatment 
but retain antibiotic sensitivity 
following regrowth.

Polydimethylsiloxane
An optically clear organic 
polymer that is commonly 
used for soft lithography.

Stochastic
Probabilistic; governed by 
chance.

microfluidic devices for single-cell TlFm
The best way to examine the dynamics of individual 
cells is to capture a single cell, hold it in place for a long 
period of time and take measurements. For many types 
of cell this can be a problem, especially as they grow, 
divide and move with fluid flows. Cells can be immo-
bilized in various ways, such as by taking advantage 
of surface adherence properties61, chemically attach-
ing them to the chamber58 or even impaling them with 
synthetic nanostructures62. However, for many studies, 
these solutions are not viable. Instead, some groups are 
creating microfluidic chips that put physical constraints 
on the movement of cells.

In one of the first studies that used microfluidics 
to constrain cells for long-term study, Balaban et al. 
forced E. coli cells to grow in linear chains derived from 
a single cell to investigate the switch-like behaviour of 
bacterial persistence63,64. To do this, they created a flow 
chamber-like device in which the cells grew on a layer of  
polydimethylsiloxane (pDmS) that had been moulded 
to form grooves, each with a width similar to that of a 
single E. coli cell. A permeable membrane and pDmS 
flow chamber were placed on top of this layer to sup-
ply media and antibiotics (FIG. 1). The authors showed 
that bacterial persistence is linked to pre-existing gene 
expression heterogeneity in the population, and from 
the data obtained they were able to create a mathemati-
cal model that accurately described the phenomenon. 
The method used by Balaban et al. worked well for 
investigating bacterial persistence. The linear chains 
created by the grooves made it easy to discern line-
ages among the cells, and the height constraints limited 
the cells to a monolayer for easy focus. However, the 
complex, multilayer design makes the device difficult 
to assemble.

In more recent designs, the number of layers has been 
reduced by the bonding of a single piece of moulded 
pDmS directly onto glass coverslips. Several groups have 
created ‘microchemostats’50,51 with this simplified design 
to mimic the function of microbioreactors65,66. For exam-
ple, Cookson et al. used the Tesla microchemostat51,60 to 
examine the expression of fluorescent protein in single 

cells of Saccharomyces cerevisiae over many generations 
(FIG. 2). These types of devices have proved useful, but 
are not without their limitations. As the colonies grow, 
fluid lines going into or out of the chip can clog with 
cells, and the efficiency at which the devices constrain 
the population size decreases. Furthermore, there is no 
guarantee that an individual cell will stay in the cham-
ber. However, long-term acquisition of single-cell tra-
jectories is possible, and the total duration depends on 
the organism and chip design. Various versions of the 
Tesla microchemostat can support log-phase growth of 
E. coli for 4–10 hours and S. cerevisiae for 24–48 hours, 
depending on the conditions.

Other designs have refined single-cell tracking 
even further. Ryley and pereira-Smith recently created 
a microfluidic chip designed to individually trap S. cer-
evisiae cells in small compartments, or ‘jails’52 (FIG. 3a,b). 
Aliquots of cell suspensions are placed on top of the 
arrays, and the cells are allowed to settle into the jails. 
As the cells grow and divide, the geometry of the jail 
forces the bud outside the ‘bars’. Once the bud detaches, 
it is washed away by the flow of the surrounding fluid, 
leaving the mother cell trapped inside the jail. Similarly, 
Di Carlo et al. have also trapped single cells for long-
term data acquisition. They used an inverted catching 
design (FIG. 3c–e) to trap individual cells and examine 
enzyme kinetics in mammalian Hela, 293T and Jurkat 
cells54. like Ryley and pereira-Smith’s chips, this design 
was highly paralleled so that many individual cells 
could be trapped simultaneously.

Other groups have reported chip designs that can 
trap either single cells or small populations of cells67,68, 
and these have been used in numerous observational 
studies, including analysis of the pheromone response 
of S. cerevisiae69, the long-term growth of mammalian 
cells49, drug screening at the single-cell level70, inter-
cellular Ca2+ flux measurements71, the dynamics of 
the nuclear factor-κB response in mammalian cells72, 
the adhesion properties of cells in response to shear 
stress73, stochastic protein expression53, hepatic inflam-
mation74 and the biomechanical ordering of growing 
bacterial populations75,76.

Figure 1 | A microfluidic device for monitoring Escherichia coli. a | A schematic of the device used by Balaban et al. in 
their study of bacterial persistence63. The device consists of four layers. On top of the glass base resides a grooved layer of 
polydimethylsiloxane (PDMS) for growing linear chains of bacteria. A permeable membrane rests on top of the grooved 
PDMS to constrain the cells to the focal plane and allow media to pass into the growth chamber. Above the membrane lies 
another layer of PDMS that houses the media flow channel. b–d | Representative time-lapse images of E. coli expressing 
yellow fluorescent protein taken approximately 45 minutes apart from each other. Figure is reproduced, with permission, 
from REF. 63 © (2004) American Association for the Advancement of Science.
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These pioneering studies demonstrated the efficacy 
of using lab-on-a-chip approaches for the long-term 
study of gene expression. But these devices are merely 
an alternative to other methods for examining cells, 
such as flow chambers and even simple agar pads. The 
real benefit of using microfluidic devices comes when 
one takes advantage of the ease with which microscale 
fluid flows can be manipulated both temporally and 
spatially to control environmental conditions. Such 
manipulation is now possible with the next generation 
of microfluidic chips.

Controlling the environment on microfluidic chips
To survive and thrive, cells must be able to react and 
adapt to changes in environmental conditions. Gene 
regulatory networks and cellular signalling pathways 
often determine cellular responses to environmental 
perturbations, and experimental techniques aimed at 
probing these signalling mechanisms require the ability 
to precisely control extracellular conditions.

Generating spatial gradients. Researchers are now using 
microfluidic devices to generate spatial gradients in 
chemical concentrations. This line of research is broadly 
applicable because many cellular signalling pathways 
can detect chemical gradients and respond accordingly. 
For instance, bacterial chemotaxis is mediated by sens-
ing gradients in nutrients, which allows cells to move 
towards regions more suitable for growth. Similarly, the 
pheromone response of S. cerevisiae enables it to detect 
gradients of α- or a-factor, thus allowing haploid cells to 
mate with cells of the opposite mating type.

One commonly used method for generating spatial 
gradients with microfluidic devices was developed by 
Jeon et al.55 and later expanded on by Dertinger et al.56 
(both from the Whitesides laboratory). The technique 
involves the repeated combination and mixing of sepa-
rate inputs through a network of channels (FIG. 4). With 
devices such as these, Jeon et al. studied the chemotac-
tic behaviour of human neutrophils in various types of  
chemical gradients57. They placed cells on one side 
of a chamber containing a concentration gradient of  

chemo attractant with a maximum concentration in the 
middle of the chamber. As expected, cells sense the gra-
dient and move towards the maximum. However, the 
behaviour of the cells also depends on the spatial gradient 
on the other side of the maximum. If the concentration 
of chemoattractant on the other side of the maximum 
gradually falls back to zero, cells move slightly beyond 
the maximum before turning back. However, when the 
researchers configured the device to create a precipitous 
fall on the other side of the maximum (like a sawtooth 
wave), the cells reach the maximum and abruptly halt. 
These findings suggested that the gradient-sensing 
mechanism in neutrophils is more adaptive than previ-
ously thought — it temporarily ignores slight changes in 
the gradient but immediately reacts to large ones.

In another study, Hao et al. used a microfluidic 
chip that could create chemical gradients to study the 
response of S. cerevisiae to differing concentrations of 
pheromone77. As yeast cells are exposed to pheromone 
they undergo morphological changes that lead to elon-
gated growth or growth arrest, depending on the con-
centration of pheromone. Interestingly, the same kinase 
cascade is responsible for both of these phenotypes. 
Two similar protein kinases, Fus3 and Kss1, mediate 
these outcomes, but it was unclear how they discrimi-
nate between conditions. using their gradient device 
in combination with mathematical modelling, Hao and 
colleagues showed that the scaffold protein Ste5, which 
brings together various proteins in the mitogen-activated  
protein kinase (mApK) cascade, dynamically regulates 
the activity of Fus3 but not Kss1. Whereas Kss1 exhib-
its a fast, graded response to doses of pheromone, Ste5 
slows the response of Fus3 and confers a switch-like,  
ultrasensitive dose–response profile upon it.

Other designs for creating spatial gradients in micro-
fluidic devices have also been developed78–83; these have 
been used to examine phenomena such as bacterial84,85 and  
T cell chemotaxis86, neural stem cell differentiation87  
and the yeast pheromone response88. Some groups have 
also combined gradient generation with dynamic control 
to create devices capable of changing chemical gradients 
over time89,90.

Figure 2 | the tesla microchemostat. a | Cells are loaded through reservoirs leading into port C and trapped in the imaging 
region (which is enlarged in part b). Once enough cells are trapped, the flow is reversed by increasing the pressure in the 
media inlet, port M. Excess media is routed through port W (waste). Heated water is passed through two channels (labelled 
T1 and T2) on either side of the imaging chamber to control the temperature on the chip. b | A close-up diagram of the 
imaging region. Once the flow has reversed, the trapping region (grey) is isolated from the flow and only receives nutrients 
through diffusion. c | A typical fluorescence image of Saccharomyces cerevisiae expressing GFP. The height of the imaging 
chamber is 4 μm, which forces the cells to grow in a monolayer and creates a uniform focal plane. Outside the chamber, the 
channels are twice as tall, which allows cells to be easily washed away by the flow. Figure is reproduced, with permission, 
from REF. 51 © (2005) Macmillan Publishers Ltd. All rights reserved.
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Cellular responses to temporally varying environments. 
microfluidic devices also now exist that can temporally 
control chemical concentrations. early work in this field 
has focused on reverse engineering or characterizing cel-
lular pathways33,58–60,91. For instance, mettetal et al. used a 
computer-controlled valve system to create a square wave 
of NaCl pulses that was injected into a flow chamber to 
measure the response of the osmo-adaptation pathway in 
S. cerevisiae58. This pathway, which responds to osmolar-
ity changes through the high-osmolarity glycerol mApK 
cascade, is of particular interest because it contains two 
negative-feedback loops that act on different timescales. 
One of these loops, which is governed by the association 
and dissociation of ligands and receptors of the kinase 
cascade, is extremely fast, whereas the other, which is 
mediated by transcriptional regulation and protein syn-
thesis, is much slower. By subjecting cells to periodic 
stimuli of various frequencies and comparing the results 
with mathematical models, mettetal et al. found that 
these two feedback loops have distinct biological func-
tions. As expected, the fast feedback loop dominates the 
main response of the pathway. However, as a result of 
their mathematical modelling, the authors found that the 
slow feedback loop allows cells to respond even faster to 
future stimuli, especially after large osmotic shocks.

In a similar study, Bennett et al. combined a micro-
fluidic chip with a variable pressurization system that 
could create user-defined temporal waveforms to exam-
ine the transcriptional response of the glucose–galactose 
switch in S. cerevisiae60. To do this, they programmed a 
device, which they termed the ‘dial-a-wave’ (FIG. 5), to 
sinusoidally vary glucose concentrations over a galac-
tose background. They then measured the expression of 

a fluorescent reporter fused to GAL1, a key player in the 
galactose utilization network. Because the galactose utili-
zation network is so well characterized, the authors could 
create a detailed computational model incorporating the 
known reactions and compare it with their experimental 
results. Interestingly, they found that although static data 
obtained from flow cytometry matched their model well, 
the dynamic data obtained from the TlFm experiments 
did not. To reconcile the model with their data, Bennett 
et al. proposed a previously undiscovered form of post-
transcriptional regulation in the galactose–glucose 
switch. They surmised, and verified through additional 
experiments, that the transcripts produced from GAL1 
(which encodes a galactokinase that initiates galactose 
catabolism) and GAL3 (which encodes a regulatory 
protein that confers a positive-feedback response to the 
galactose network) are less stable in glucose-rich envi-
ronments. Therefore, the coupling of TlFm and math-
ematical modelling led directly to the discovery of a new 
regulatory mechanism in this well-studied network.

The two studies by mettetal et al. and Bennett et al. 
show the benefit of using dynamic perturbations, TlFm 
and mathematical modelling to study intracellular sig-
nalling pathways (FIG. 6). In both studies, they were able 
to discover new phenomena as a consequence of their 
mathematical modelling. Furthermore, they were able to 
‘train’ their models based on the dynamic data that were 
obtained through microfluidics, thus revealing insights 
that would otherwise have been obscured. It is also inter-
esting to note that the kinds of mathematical models the 
two groups used were different. For their study, mettetal 
et al. used principles of linear systems theory that are 
common in engineering. This type of model requires 

Figure 3 | Microfluidic trapping devices designed for the long-term acquisition of single-cell data. a | The device 
designed by Ryley et al. has an array of single-cell ‘jails’ that can trap yeast cells52. b | As cells grow and divide in the jail, the 
geometry forces the daughter cell outside the jail, where it is flushed away by media flow. Di Carlo et al. designed a similar 
trap for mammalian cells54. c | Cells (green circles) are loaded through the array, in which they are trapped by low-hanging 
areas of polydimethylsiloxane (PDMS; light blue). d | Fluid flow helps to keep the cell trapped against the PDMS, and other 
cells are diverted around the PDMS. e | A microscope image of an array of these traps, showing individual cells. Part a is 
reproduced and part b is modified, with permission, from REF. 52 © (2006) Wiley. Parts c and d are modified and part e  
is reproduced, with permission, from REF. 54 © (2006) American Chemical Society.
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little knowledge of the underlying biological mechanisms 
but still provides insights into the dynamics. By contrast, 
Bennett et al. created a model that tried to incorporate 
as many known biochemical reactions as was feasible. 
These types of models may be more complete, but they 
suffer from a lack of knowledge of the parameter values. 
even so, the model created by Bennett et al. accurately 
simulated the data and made testable predictions that 
they subsequently verified experimentally.

There are also several alternative ways of achieving 
dynamic control of chemical concentrations in chips92–97. 
Some laboratories have even created parallel designs that 
can deliver temporal chemical stimulation to multiple 
imaging chambers simultaneously for high-throughput 
analysis98. Taylor et al. recently used this type of technique 
to examine the pheromone response and mApK signalling 
in S. cerevisiae99. Furthermore, microfluidic devices that 
can generate time-dependent signals have also been devel-
oped for studying mammalian cells. For instance, Higgins 
et al. used a microfluidic device to control the oxygen con-
tent of a streaming channel of blood cells to study the vaso-
occlusion caused by sickle cell disease100. They found that 
the polymerization and melting of sickle cell haemoglobin, 
which depend on the oxygen concentration, are enough 
to recreate occlusion and rescue, respectively. polinkovsky 
et al. later arrived at a similar solution; by temporally con-
trolling the mixing of two gases before their delivery to  
cell-growth and imaging chambers, they were able  
to study the oxygen-dependent growth rate of E. coli101.

limitations
There are still some major limitations to using micro-
fluidic devices for the creation of spatial and temporal 
environmental perturbations. The flow of fluid in the 
chips must be precisely controlled to accurately gener-
ate the desired gradients or changes; however, as the 
cells grow and divide, the fluidic resistances inside  

the channels change, which causes diversions or even 
blockages of the fluid flows. Because of this, it can be diffi-
cult to maintain precise gradients and waveforms for long  
periods of time.

The creation of better cell traps should help to alleviate 
this problem. Newer devices control the population size 
and wash away unwanted cells more efficiently than the 
first generation of lab-on-a-chip approaches. Furthermore, 
even with the problem of maintaining fluid flow, micro-
fluidic devices are still the best option for examining cellu-
lar responses to environmental perturbations — especially 
when single-cell resolution is necessary.

Beyond single cells
In addition to examining single-cell dynamics, which we  
have focused on in this Review, researchers are 
using microfluidic devices to examine higher-level  
phenomena50,75,76,102–105. Often, cells exhibit behaviours 
as a group that do not manifest at the single-cell level. 
For instance, many types of bacteria can detect fluctua-
tions in cell density through quorum-sensing signalling 
molecules106. Balagaddé et al. used a microfluidic device 
to study the growth dynamics of a synthetically altered 
strain of E. coli that transcribes a cell death protein 
(lacZα–CcdB) at high cell densities43. They found that 
when the synthetic circuit is turned off, cell densities ini-
tially increase exponentially before eventually saturating, 
as expected. However, when the circuit is turned on, the  
cell densities oscillate over time. This occurs because  
the initial concentration of the intercellular signalling mol-
ecule acyl-homoserine lactone (AHl) is too low to induce 
expression of the cell death protein. Then, as cell densi-
ties rise, so does the concentration of AHl, subsequently 
initiating transcription of lacZα–CcdB. As cells die, the 
concentration of AHl declines, resulting in lowered  
transcription of lacZα–CcdB, which allows cellular 
growth to begin anew.

Figure 4 | A microfluidic device designed for generating concentration gradients. a | Schematic of the device. 
There are three inlet ports (labelled I

left
, I

middle
 and I

right
), which feed down through a diffusion array to the imaging chamber. 

b–d | Depending on the make-up of the three inlet ports, various spatial gradients can be achieved. Figure is reproduced, 
with permission, from REF. 56 © (2001) American Chemical Society.
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lucchetta et al. used a microfluidic device to study 
perturbations to the patterning network of Drosophila 
melanogaster embryos107. During D. melanogaster embry-
onic development, the even skipped gene is expressed in 
seven evenly spaced stripes of high and low expression 
levels along the anteroposterior axis of the embryo. The 
device creates two separate laminar aqueous flows of 
different temperatures, thus subjecting D. melanogaster 
embryos to thermal perturbations along the antero-
posterior axis. In this manner, the authors affected the 
relative growth rates of the two halves of the embryo, 
because warmer sections develop faster. Contrary to 
expectation, the patterning network was found to be 
robust to perturbation by the heat treatment. However, 
differential growth rates of the two halves of the embryo 
led to abnormal temporal development of the stripes. 
under normal conditions the stripes resolve in a specific 
order, but when a temperature gradient is introduced 
this ordering is changed.

Another study, by Keymer et al., used microfluidic 
devices to study the population dynamics of compet-
ing strains of E. coli105. The authors simultaneously grew 
two strains of E. coli in coupled ‘microhabitat patches’104 

and observed their growth patterns over multiple days. 
One of the strains carried a gasp (growth advantage in 
stationary phase) mutation that should have allowed the 
mutant strain to outcompete the wild type. Interestingly, 
Keymer et al. found that when the two strains are 
allowed to compete, the overall fitness of both strains 
is greater than when they are grown in isolation — pro-
viding that the medium is nutrient rich. Although they 
have no explanation for why this effect occurs, they were 
able to demonstrate that the phenomenon has strong 
spatiotemporal aspects.

These studies illustrate the myriad possibilities of 
using microfluidic devices for studying gene regula-
tion beyond single cells. They also reveal a particularly 
intriguing problem for mathematical biologists. How 
does one go about modelling phenomena that originate 
at small scales (for example, as genes and proteins) yet 
manifest at large scales (for example, as developmen-
tal processes and interspecies fitness)? There is still no 
good answer to this question. Future studies will greatly 
benefit from microfluidic devices, because they give 
researchers more environmental control over small  
cellular populations than any other method.

Figure 5 | the microfluidic ‘dial-a-wave’ device. a | The overall design of the dial-a-wave device is similar to that of 
the Tesla microchemostat51. Cell input channels (dark blue) feed into an imaging chamber (grey), in which cells are 
trapped for long periods of time. The growth medium for the imaging chamber is supplied by a switching channel 
system (switch; green channels) that can provide programmable, time-dependent concentration waves. b | As the 
growth medium (in the green channel) flows near the imaging chamber, small perfusion channels (light blue) allow  
the medium to diffuse into the cell culture. c | The switch region determines the make-up of the medium supplied to the 
imaging chamber. Two inputs, labelled input 1 and input 2 in a and c, feed into the switch region. Owing to the small 
flow rates and the geometry of the channels, the interface between the two inputs is laminar, which allows for precise 
control over the mixing ratio. d | By differentially pressurizing the two input reservoirs, the laminar interface can be 
moved from one side of the switching region to the other. In this way, the relative concentrations of the two media can 
be programmed to any desired waveform. Figure is modified, with permission, from Nature REF. 60 © (2008) Macmillan 
Publishers Ltd. All rights reserved.
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Conclusion
microfluidic devices are now at the forefront of research 
into the dynamics of gene regulation. They, and TlFm 
techniques in general, are essential tools that allow us 
to better understand the dynamic ways in which genes 
determine cellular responses to internal and external 
stimuli. Through the concerted interplay of experi-
ments and mathematical modelling, general design 
principles will emerge that will reveal the mechanisms 
behind native networks and govern the future design 
of synthetic circuits.

It should be stressed that our understanding of 
gene regulation is continually evolving, and we are 
finding that even basic processes can behave in ways 
that were unexpected several years ago. For instance, 
Cai et al. found that the yeast transcription factor Crz1 
encodes its signal not by nuclear concentration but 
by frequency-modulated bursts into and out of the 
nucleus108. This is different from past models of tran-
scription factor activity, in which it was not the fre-
quency but the amplitude (that is, the concentration) 
of the signal that determined transcriptional activity. 

Transcriptional regulation has been at the heart of 
many theoretical studies of gene networks, and we are 
now finding that the mechanisms by which transcrip-
tion factors modulate gene activity are more dynamic 
than once thought.

To further complicate the situation, there is a wide 
range of techniques for mathematically modelling gene 
network dynamics109, as illustrated by the discussion 
of the studies from mettetal et al.58 and Bennett et al.60 
above. Which, if either, of these two types of models is 
the ‘correct’ method? Systems-level models that obscure 
molecular-level reactions but reveal large-scale phenom-
ena, or detailed models that strive for biological accu-
racy at the expense of analytic tractability? The answer 
to this is still unclear and is likely to depend on the types 
of questions being asked of the model. Detailed mod-
els, such as that formulated by Bennett et al., delve into 
the particulars of biochemical pathways in an attempt 
to elucidate the fundamental mechanisms underly-
ing regulation. By contrast, systems-level models,  
such as that used by mettetal et al., are an attempt to 
examine the dynamics of signalling modules as a whole. 

Figure 6 | temporal driving with microfluidic chips to test mathematical models. a | The concentrations of key 
components of the growth media are controlled, or ‘driven’, by a fluidic waveform generator. In the chip, cells are 
continually measured with fluorescence microscopy as they react to the changing media conditions. Setups similar to 
this have been used by several groups to explore signalling pathways in Saccharomyces cerevisiae. b | Mettetal et al.58 
drove the high-osmolarity glycerol (HOG) pathway in yeast and discovered key signalling characteristics for wild-type 
and network-deficient strains. c | The dynamic data obtained were used to validate and refine the mathematical 
model. The graph compares wild-type S. cerevisiae with a strain expressing a reduced amount of Pbs2 (polymyxin b 
sensitivity 2). d | Bennett et al.60 drove the galactose utilization network in yeast with periodic carbon source changes 
and found new network connections. e | The dynamic data obtained from the experiment were used to validate and 
refine the mathematical simulation. The data show how the network created a low-pass filter. YPH499 is an  
S. cerevisiae strain that exhibits reduced galactose sensitivity in static environments. a.u., arbitrary units;  
Gal, galactose; Gal3*, Gal3 bound to galactose; Glc, glucose; Gpd1, glycerol-3-phosphate dehydrogenase 1;  
Gpp2, (DL)-glycerol-3-phosphatase 2; P, pressure. Parts b and c are reproduced, with permission, from REF. 58 © (2008) 
American Association for the Advancement of Science. Parts c–e are reproduced, with permission, from Nature REF. 60 
© (2008) Macmillan Publishers Ltd. All rights reserved.
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At some level, both types of models are probably correct.  
Therefore, instead of debating the correctness of one 
method or the other, a better question to ask might 
be: at what level of organization, if any, can one ignore 

individual molecular interactions and begin to model 
gene networks in terms of signalling modules? This is 
just the type of question that microfluidic devices will 
help us to answer.
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