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Flows of cells growing as a quasimonolayer in a confined space can exhibit streaming, with narrow
streams of fast-moving cells flowing around clusters of slowly moving cells. We observed and analyzed
this phenomenon experimentally for E. coli bacteria proliferating in a microfluidic cell trap using time-
lapse microscopy. We also performed continuum modeling and discrete-element simulations to elucidate
the mechanism behind the streaming instability. Our analysis demonstrates that streaming can be
explained by the interplay between the slow adaptation of a cell to its local microenvironment and its
mobility due to changes of cell-substrate contact forces.
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Microorganisms employ a wide range of cooperative
strategies for responding to adverse environmental condi-
tions [1-5]. In many cases, these strategies lead to intricate
patterns and complex shapes in bacterial colonies [6-8].
While such patterning is usually associated with long-
range cell signaling and motility [9], microorganisms are
often found in dense communities where direct cellular
contact plays an important role in the dynamics of colony
formation [10,11]. Moreover, bacteria often actively seek
to aggregate in small cavities and crevices, which helps
them to cope with environmental conditions [12,13]. In our
recent work [14] we studied orientational ordering of
bacteria caused by their growth and ensuing hydrodynamic
flow. Here, we use microfluidic traps to characterize a
general streaming instability occurring in a confined col-
ony of nonmotile bacteria. In order to investigate the
mechanism driving the streaming instability, we develop
a continuum model and complementary discrete-element
simulations with cells modeled as growing and dividing
soft spherocylinders which adapt their size and mobility to
local microenvironments.

In order to study bacterial colony growth in a confined
environment, we constructed microfluidic devices featur-
ing two types of traps (open and side) capable of sustaining
a two-dimensional colony of nonmotile bacteria E. coli
over many generations. Open traps are ~1 pum-deep rect-
angular regions of different horizontal dimensions (up to
200 X 2000 wm?) embedded in the middle of the
6—10 pwm-deep main channel [see Fig. 1(a)]. The external
fluid flow through the main channel (~50 um/ sec) deliv-
ers nutrients to the open boundaries of the trap, allowing
for their diffusion into the interior of the trap. The fluid
flow in the channel also removes metabolic waste and cells
ejected from the trap. Side traps have similar dimensions
but are embedded in the side walls of the main channel and
have only one open boundary [Fig. 1(b)].

In the beginning of each experiment we placed a few
bacteria inside the trap and waited several hours (mean cell
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division time was about 20 min) until the colony grew and
filled the trap region completely. The subsequent growth
was balanced by a significant expansion flow towards the
open boundaries of the trap. We found that the expansion
flow of growing cells inside the traps was surprisingly
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FIG. 1 (color online). (a),(b) Schematic views of the micro-
fluidic devices with open and side traps. (c) Magnitude of the
vertical component of cell velocity overlaid on a phase contrast
image of the trap at time 210 min of the run shown in movie S1;
(d) Space-time plot of the cells’ exit velocity component aver-
aged over the lower 20 um of the trap in (c).
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nonuniform. This behavior was quantitatively analyzed by
particle image velocimetry software MATPIV [15]. Fig-
ure 1(c) illustrates that cells escape from an open trap
into the main channel in narrow rapidly moving streams
that bypass regions of almost stagnant cells localized near
the open boundaries (see also movie S1 [16]). The cell
streams are dynamic [see Fig. 1(d)]; the number and posi-
tions of streams fluctuate over the duration of a typical
experiment. Similar results were obtained in side-trap ex-
periments; see [16]. More detailed inspection of the cells
inside the traps revealed that stagnant cells are generally
thicker than rapidly moving cells comprising the streams.
Furthermore, the cell size is strongly dependent on its
distance from the open boundary of the trap: in the trap
interior the cell diameter is only half of that near the open
boundaries (where the diameter is about 1 wm) [16]. There
may be multiple factors which can cause this dependence,
from nutrient depletion to waste accumulation and quorum
signaling. Our estimate [16] gives the characteristic pre-
ferred carbon source depletion distance of the order of
25 pm from the open boundary, which is consistent with
the observed transition to smaller cell sizes.

The instability in cellular streams can be understood in
terms of the interplay between the cell size and its me-
chanical properties. Since the trap height is nearly equal to
the cell diameter, the mechanical interaction between the
cells and the top and bottom walls of the trap affects their
mobility. Under the same pressure gradient, smaller cells
experience less drag and move faster, while larger cells
experience higher drag and move slower. As cells move
towards the open boundary, they grow larger in diameter,
which leads to their reduced mobility. The streaming in-
stability occurs when the growth rate of the diameter is
comparable to the time a cell spends moving from the back
of the trap to the open boundary. Under this condition,
slowly moving cells grow larger and can effectively stop
moving and form obstacles that permit streaming patterns
to emerge for smaller, fast-moving cells.

We developed a continuum model of the colony dynam-
ics which generalizes equations of two-dimensional in-
compressible fluid dynamics to include the effects of cell
growth and drag force, the latter arising from the interac-
tion of the cells with the floor and ceiling of the trap. We
did not include the effects of cell shape and position-
dependent growth rate in the model since they do not
appear to be essential for the basic streaming mechanism.
The incompressible “cell fluid” of constant density (scaled

to 1) is described by the following equations (D/Dt =
a/dt+ v - V):
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with © the cell velocity field, p the pressure field, f a field

characterizing cell diameter, g(f) an f-dependent coeffi-
cient of (top and bottom) drag for cells moving in the
shallow trap, y the rate of f adaptation to the local chemi-
cal environment, u a coefficient of effective viscosity for
cell flow, and « the volumetric growth rate of the “cell
fluid.” According to Eq. (2), cell ““diameter” f of a cell ata
fixed position 7 reaches an equilibrium value c(7) that is
chosen to be highest near an open boundary of the cell trap.
Thus, stagnant cells become largest near the trap opening.
The somewhat unusual form of the incompressibility equa-
tion (3) is due to the presence of a distributed mass source
due to exponential cell growth. This equation can be used
to find the hydrodynamic pressure p. We impose the
boundary condition of a constant pressure at the open sides
of the trap. The drag coefficient g(f) is assumed to non-
linearly increase with f, due to the appearance of strong
contact friction between the cell and the trap for large cells.
In all results given below we have used g(f) = f2,
although the specific form of the nonlinearity is not essen-
tial. We also neglect cell inertia and employ the over-
damped limit for the momentum equation (Dv/Dt = 0).

The analysis simplifies considerably in the case of
narrow-channel flow (small x dimension), where Eqgs. (1)—
(3) in the overdamped limit can be reduced to the one-
dimensional system
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Equation (6) stipulates a linear velocity profile v(z, 1) =
az + vy(1). In a side trap with the solid wall at z = 0 and
the open boundary at z = L, vy(t) = 0, and the velocity,
pressure, and f fields are asymptotically stationary and
unique. The open-trap case (open boundaries at z =
*+L.) is more interesting, since vy(#) can be a function of
time. Substituting the expression for v(z, ¢) in Eq. (4)
and integrating the latter from —L, to L, with the
boundary condition p(L,) = p(—L,) we obtain vy(t) =

—aG [f]/Golf], where G[f]= [LJL: dzz*g(f(z, 1).
This formula defines the flow velocity for a known field
f(z, 1). The remaining Eq. (5) can be solved through a
polynomial mode expansion f(z, 1) = X f, ()",
c(z) = X5 c,z" and truncation to a finite-dimensional
set of nonlinear ODEs (see [16] for the straightforward
derivation). The numerical bifurcation analysis of the sys-
tem using MATCONT [17] reveals that the narrow-channel
flow in an open trap exhibits a variety of dynamic regimes,
including symmetric flow (vy = 0), asymmetric flow
(vy = const # 0), and oscillatory flow [v,(7) is periodic],
depending on parameters; see Fig. 2(a) and 2(b). We in-
deed observed nonstationary asymmetric flow regimes in
discrete-element simulations and the open-trap experi-
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ments [16]. It is also interesting to note the possibility of
bistable regimes (e.g., bistability between oscillations and
uniform flow).

The onset of cell streaming in the full two-dimensional
model can be determined by the linear stability analysis of
the transversally uniform flow with respect to small peri-
odic in x perturbations. We consider here the case of the
stationary zero-order solution, v (z), p©@(z) and fO(z).
In the first order, these solutions are perturbed by the

functions  {d,, 7, p, f} = {V(2), iV'(2)/k, P(z), F(z)} X
exp(ikx + At) (the velocity components ©,, U, satisfy
the incompressibility condition automatically). Sub-

stituting this ansatz in Eqgs. (1)-(3) we arrive at a 1D
eigenvalue problem for A, V(z), P(z), and F(z) with cor-
responding boundary conditions for side or open-trap
cases. In case of the side trap, the boundary conditions
are V(0) = F(0) = P(L,) = 0, and for a symmetric flow in
an open trap, the b.c. are P(*L.) = F(0) =0. Ad-
ditionally, we assume a continuous tangential stress con-
dition (slip) at both the inner wall and the outer free
boundary, k*V(z) + V"(z) =0, z =0, L. This problem
can be solved numerically by a shooting-matching method.
The streaming instability first occurs near the wave number
k = 2L_!; see Figs. 2(c) and 2(d). This instability requires
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FIG. 2 (color online). Results of the continuum hydrodynamic
model in the overdamped limit using ¢(z) = A + (z/L,)% L, =
1, o = 1. (a) Three regimes of narrow-channel flows: symmetric
(1), asymmetric (2), and periodic (3) flows; (b) Bifurcation
diagram of the narrow-channel flows in the (A, ) plane.
Symbol S denotes symmetric flow, A, asymmetric, and O,
oscillatory flow regimes, double symbols (A/S, O/S) indicate
domains of bistability according to local bifurcation analysis.
Points 1,2,3 correspond to time series shown in (a).
(c) Streaming instability domain in the parameter plane (A, y)
for different values of viscosity coefficient w. Streaming for a
given u occurs for A below the corresponding curve;
(d) Velocity field for the eigenfunction near the onset of a
streaming instability, with wave vector k=2, y=1, A=
0.045, = 0.001. Since the flow is inverted for 7/4 < x <
37r/4, only half the x period is displayed.

the presence of a sufficiently steep gradient in the friction
field g(f). Intermediate values for the relaxation rate (i.e.
v = «) also are required for the instability, such that
adaptation to the chemical microenvironment occurs on a
time scale comparable to cell division time. Finally, the
streaming instability was found to be sensitive to the value
of the coefficient of viscosity w [Fig. 2(c)].

The two-dimensional continuum analysis of streaming
addressed only the linear stability of uniform flow. In
addition, the continuum model does not include granular
effects, including cell shape [18]. We therefore performed
discrete-element simulations (DES) of growing and divid-
ing rodlike cells in a two-dimensional monolayer using a
generalization of the soft-particle algorithm described in
Ref. [14]. We introduced an internal variable f carried with
each “cell” and inherited by its offspring. The variable f
for each cell obeys the equation df/dt = y(c(F) — f)
analogous to Eq. (2). Cells grow at a rate proportional to
their length and divide on average at the length €;, . Escape
of cells from the trap is treated by removing cells when
their centers cross the open boundary of the trap.

Simulations for cells in a side-trap geometry provide an
extension of the linear stability analysis presented above.
In the parameter region corresponding to the linear insta-
bility we have found significant streaming (see Fig. 3 and
[16] movies S6 and S7). Similar to experiment, the struc-
tures in simulations remain dynamic, allowing drifting,
merging, and spontaneous creation of streams. Since in
most simulations traps of moderate horizontal dimensions
(up to 150 cell diameters) were explored, as expected, the
granular effects played a significant role in stabilizing
streaming instability for cells with relatively small aspect
ratios (e.g., €4y, = 3). In particular, we found that the
system could be bistable between uniform flow and stream-
ing pattern [see Fig. 3(b) and 3(c)]. These results demon-
strate that the linear instability of uniform flow gives only a
sufficient condition for streaming.

We also probed the effects of cell orientation on cell
streaming by analyzing different cell aspect ratios. Longer
cells within the streams tend to align their axis along the
flow as expected [14]. This enhanced ordering locally
reduces effective shear viscosity, since aligned long cells
easily slide past each other (cell-cell friction is assumed
small), and this further increases the intensity of streaming
[see Fig. 3(d) and [16] movie S7 for €4, = 5].

Our theoretical and numerical results indicate that the
streaming instability arises due to the strong dependence of
cell mobility on its size due to drag from top and bottom of
the trap. This implies that the streaming instability should
be sensitive to the depth of the trap. Additional experi-
ments in deeper traps (1.65 wm) indeed demonstrated the
loss of cell streaming [16].

In summary, we have shown that flows of bacteria
growing in confined spaces are prone to a streaming insta-
bility. The mechanism of the streaming instability is re-
lated to the coupling between the cell growth and mobility:
larger cells experience greater drag force when moving
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FIG. 3 (color online). Streaming patterns in a wide side trap:
(a) A snapshot of a cell population from a typical DES simula-
tion of short rods (€4, = 3) at time r = 30 of the simulation
shown in panel (b). Cells are colored according to their values of
f. Panels (b) and (c) show (x, ) diagrams of the z component of
cell velocity averaged over the z axis. Both simulations had the
same parameters and were initiated at + = —15) with a single
cell, but for the simulation but in (b) f was allowed to evolve
freely from the very beginning while in (c) f was fixed at ¢(z)/2
until time ¢ = 5 and then relaxed. (d) Snapshot of the population
of longer rods (€4, = 5). Parameters are L, = 150, L, = 20,
a=0.5,vy=05,c(z) =1 +200(z/L.)*

within a confined space. Cell size, in turn, depends on local
chemical environment. In our experiments, cells grow
larger near the edge of the trap where the nutrient concen-
tration is higher and waste concentration is lower. The
longer the cell remains near the edge of the trap, the larger
it becomes and the more difficult it becomes for it to leave
the trap. Smaller cells, which are growing in the bulk of the
colony, are forced to bypass the larger static cells and form
narrow streams. These streams are reminiscent of Saffman-
Taylor viscous fingers at an interface between two fluids
with different viscosities [19,20]. While we observed the
streaming instability in laboratory strains of bacteria grown
in microfluidic environments, we believe that the phe-
nomenon is fairly generic and is likely to occur in dense
colonies in natural habitats, since bacteria often are found
in dense populations in small cavities and crevices where
they from biofilms. Future investigations of streaming in

biofilms may benefit from the inclusion of effects not
included in the present investigation, such as cell-cell and
cell-trap adhesion due to an extracellular polymeric matrix.
More generally, the interplay between physical properties
of cells and their mobility may play an important role in
other examples of morphogenesis, such as invasive tumor
growth [21].

This work was supported by the NIH and UC-MEXUS.
We are grateful to Dmitri Volfson for writing the original
numerical code adapted for our discrete-element simula-
tions, and to Denis Boyer for useful discussions.

*Itsimring @ucsd.edu

[1] J. A. Shapiro, Annu. Rev. Microbiol. 52, 81 (1998).

[2] B.L. Bassler, Cell 109, 421 (2002).

[3] P. Stoodley, K. Sauer, D. G. Davies, and J. W. Costerton,
Annu. Rev. Microbiol. 56, 187 (2002).

[4] R.M. Donlan, Emerging Infectious Diseases 8, 881
(2002).

[5] P.S. Stewart and M. J. Franklin, Nat. Rev. Microbiol. 6,
199 (2008).

[6] E. Ben-Jacob, I. Cohen, O. Shochet, 1. Aranson, H.
Levine, and L.S. Tsimring, Nature (London) 373, 566
(1995).

[7] H. Levine, 1. Aranson, L. Tsimring, and T.V. Truong,
Proc. Natl. Acad. Sci. U.S.A. 93, 6382 (1996).

[8] J. Dockery and I. Klapper, SIAM J. Appl. Math. 62, 853
(2002).

[9] S. Park, P.M. Wolanin, E. A. Yuzbashyan, H. Lin, N.C.
Darnton, J. B. Stock, P. Silberzan, and R. Austin, Proc.
Natl. Acad. Sci. U.S.A. 100, 13910 (2003).

[10] T. Tolker-Nielsen, U.C. Brinch, P.C. Ragas, J.B.
Andersen, C.S. Jacobsen, and S. Molin, J. Bacteriol.
182, 6482 (2000).

[11] D. Drasdo, Phys. Rev. Lett. 84, 4244 (2000).

[12] R. Shimp and F. Pfaender, Appl. Environ. Microbiol. 44,
471 (1982).

[13] J. Monier and S. Lindow, Proc. Natl. Acad. Sci. U.S.A.
100, 15977 (2003).

[14] D. Volfson, S. Cookson, J. Hasty, and L. S. Tsimring, Proc.
Natl. Acad. Sci. U.S.A. 105, 15346 (2008).

[15] J.K. Sveen, An Introduction to MatPIV v.1.6.1, (Dept. of
Mathematics, University of Oslo, Oslo, 2004), http://
www.math.uio.no/~jks/matpiv.

[16] See supplementary material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.104.208101.

[17] A. Dhooge, W. Govaerts, and Y.A. Kuznetsov, ACM
Trans. Math. Softw. 29, 141 (2003).

[18] H.M. Jaeger, S.R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 68, 1259 (1996).

[19] J. Casademunt and F.X. Magdaleno, Phys. Rep. 337, 1
(2000).

[20] D. Bensimon, L. P. Kadanoff, S.D. Liang, B. 1. Shraiman,
and C. Tang, Rev. Mod. Phys. 58, 977 (1986).

[21] A.R.A. Anderson and V. Quaranta, Nat. Rev. Cancer 8,
227 (2008).

208101-4


http://dx.doi.org/10.1146/annurev.micro.52.1.81
http://dx.doi.org/10.1016/S0092-8674(02)00749-3
http://dx.doi.org/10.1146/annurev.micro.56.012302.160705
http://dx.doi.org/10.1038/nrmicro1838
http://dx.doi.org/10.1038/nrmicro1838
http://dx.doi.org/10.1038/373566a0
http://dx.doi.org/10.1038/373566a0
http://dx.doi.org/10.1073/pnas.93.13.6382
http://dx.doi.org/10.1137/S0036139900371709
http://dx.doi.org/10.1137/S0036139900371709
http://dx.doi.org/10.1073/pnas.1935975100
http://dx.doi.org/10.1073/pnas.1935975100
http://dx.doi.org/10.1128/JB.182.22.6482-6489.2000
http://dx.doi.org/10.1128/JB.182.22.6482-6489.2000
http://dx.doi.org/10.1103/PhysRevLett.84.4244
http://dx.doi.org/10.1073/pnas.2436560100
http://dx.doi.org/10.1073/pnas.2436560100
http://dx.doi.org/10.1073/pnas.0706805105
http://dx.doi.org/10.1073/pnas.0706805105
http://dx.doi.org/10.1145/779359.779362
http://dx.doi.org/10.1145/779359.779362
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1103/RevModPhys.68.1259
http://dx.doi.org/10.1016/S0370-1573(00)00054-5
http://dx.doi.org/10.1016/S0370-1573(00)00054-5
http://dx.doi.org/10.1103/RevModPhys.58.977
http://dx.doi.org/10.1038/nrc2329
http://dx.doi.org/10.1038/nrc2329

