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Following the lead of earlier researchers, we construct a real space renormalization group map for a
class of self-organized critical models. We then test a series of quantitative predictions implied by this
map against direct simulations of various models. The theory passes four tests, but apparently fails a
fifth. We also find that the map has an interesting nongeneric property, suggesting a deeper structure
to the theory than previously appreciated. [S0031-9007(98)06840-9]

PACS numbers: 64.60.Lx, 05.40.+j, 46.10.+2z, 64.60.Ak

The subject of self-organized criticality (SOC) continueslevel of agreement is impressive, and suggest that the real
to stimulate a great deal of interest. While the extent ospace RG approach to SOC is a promising avenue of study.
the connection between SOC and laboratory experiment#/hat is more, we find an unexpected property of the RG
is a subject of ongoing debate [1], theoretical progress comnap which implies a deeper structure to the theory than
tinues apace [2—8]. Particularly promising are efforts topreviously appreciated.
explain the behavior of these complex dynamical systems Our choice of directed models is doubly motivated.
at a fundamental level, i.e., using ideas that go beyonéirst, exact results for the avalanche area exponent are
phenomenology or computer simulations. Typically re-available for a particular model within the class we
stricted to certain subclasses of models, several intriguingonsider [8]. Second, the directed nature of the dynamics
approaches can be found in the literature; these includenakes the construction and final form of the RG map rela-
e.g., exploiting algebraic structures [3,4], connections witttively simple [7], which facilitates its detailed analysis.
singular diffusion equations [5], analysis of extremal dy- We begin by defining the class of dynamical models
namics [6], and renormalization group approaches [2,7]. to be considered. On a two-dimensional square lattice

The immediate inspiration for the present work is aof size L X L, we defineh(i, j) as the integer-valued
real space renormalization group (RG) theory of SOCheight at site(i, j). The system is perturbed by choosing
proposed by Pietronero, Vespignani, and Zapperi [2]at random one of the sites on the top roiv=<{ 1) and
The goals of that theory are ambitious: to explain theincrementing its height by one unit. If the height at
origin of power law avalanche distributions, to calculateany site exceeds the threshold valug& then the site
from first principles the critical exponents, to explain therelaxes in one of three ways: (i) with probabilipxz one
apparent universality of these exponents, and to clarifgrain is transferred to its lower-right neighbor, or (ii)
the relationship between self-organized criticality andwith probability p, one grain is transferred to its lower-
equilibrium critical phenomena. While this approach isleft neighbor, or (iii) with probability(1 — pg — pr)
dogged by the usual problems of real space RG (e.ggne grain each is transferred to both forward neighbors
certain difficulties in making systematic approximations),[Excited sites undergone relaxation, regardless of their
it provides an attractive framework for understanding andinal (after relaxation) value.] The boundary conditions are
explaining a number of properties exhibited by sandpileperiodic in the horizontal direction and open on the bottom.
models, and does a good job of calculating the avalanch€his class of models is a generalization of the one studied
exponents for a class of models which includes theéby Dhar and Ramaswamy [8], which corresponds to the
original sandpile automaton of Baik al. [9]. special cas@r = pr = 0. In what follows, we refer to

The purpose of this Letter is to explore more fully, in the this particular case as the DR model. For the DR model
context of a specific example, the consequences impliethe area avalanche distribution exponent is known exactly,
by a real space RG approach to SOC. We consider a.g., in the scaling regioR(s) ~ s~ with = = 4/3 where
class of conservative sandpile models on a directed twaP(s) is the probability that precisely distinct sites relax
dimensional lattice, explicitly construct an RG map, andin a single avalanche. In Fig. 1 we plot (with diamonds)
test five consequences predicted by quantitative analysi(s) obtained by simulating the DR model to illustrate
of the map. The constructed theory does a good job: itwo points. First, even for such a small system we get
passes four of five tests; the lone discrepancy is rathea recognizable scaling region (the measured exponent is
interesting insofar as nontrivial scaling is observed everl.34). Second, for very small avalanches the data deviate
for cases where it is not predicted. Overall, we think thisfrom this scaling behavior—the observed point to point
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scatter is not a sampling effect: it is quite reproducible. 1
We will return to this small scale behavior later.

We now construct the RG map, along the general line o1g *
of Ref. [2]. We coarse grain the system by considering s
2 X 2 cells, and generate all possible relaxation sequences %%
of an initially excited cell. Since our enumeration of the
various possibilities differs somewhat from Ref. [2], it is
worthwhile to go through an example in detail. Figure 2a ¢ ggp1l
shows one relaxation sequence, which ultimately results
in spillage of a single grain to the right neighbor cell. At 1e-oo0s5t
each step in the sequence we allow one of four events
to occur: absorption (no grains spilled) with probability =~ 1e-006¢
xo [10]; one grain spilled to the lower right (left) with

0.001¢
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+

°

probability uo(v); or two grains spilled, one each to the %7, 10 100 1000 10000
right and left with probabilityzy. Treating successive S

events as independent, the path shown in Fig. 2a occurs

with probability zoxouo. FIG. 1. Avalanche distribution for the DR model (diamonds)

Generating all possible sequences, we find that therand for the model corresponding to the fixed point of the RG
are a total of nine different ways a given cell can affect itsmap (crosses). The inset highlights the nonpower law behavior
neighbors (see Fig. 2b). For each there is a probabilit¢f the DR model for small avalanches, and the corresponding
amplitude; the sequence in Fig. 2a contributes to thg%ﬁiﬁ law scaling at small length scales for the fixed point
amplitude P. After running through all possible paths, '
we get expressions for all eight amplitudes:

P =+ 220 + 2uxz + 2uxz + uvxz pare Fig. 2b); the expre_ssion for ensures tha; the coarse
5 ) 5 S, grained relaxation rule is conservative (that is, on the av-
+ 2utvxz + x°7° + uxz”, (1)  erage as many grains go into a cell as spill out).

Taken together, (1) and (2) define the RG map on
the four-dimensional space,( u,, v,, z,). [A significant
R = v2 + 2uv? + 2uxz + uvxz + 2v%xz advantage of these directed models is the compactness of

0= Wz + i’z + vz Foux? + 2u2x12,

+ 2uvixz + x%7% + v’
S = v’z + v’z + uviz + vxz? + 20%xZ%

Y = uz® + 2u*2* + wvz? + 5utvz? + x2° + duxz’,
W = vz> + uvz?® + 202> + 5uv?z% + xz° + dvxz’,
F = 5uvz + w’vz + uv’z + 2u’v?z + 3uxz?

2.3

+ 3vxz + 6uvxz® + x z7,

G =uz’ + vz + Tuvz® + 2xz%,
where we have suppressed the subscript zere,an v,

andz. . _ _ X P Q R S
The next step is to determine the appropriate coarse

grained probabilities for the original four events, which

we denote by the amplitudes, u;, vi, andz;. The <> 9|e<> <> 9|e<>

simplest way to do this is to take: NS * V¥ * * NS
Y w F G

xx=F+Q+S+2Y +2W +3G)/N, (2

u, = (P + Q)/N, FIG. 2. (a) Example of the renormalization scheme. The
cross denotes a generic site and the filled circle represents
vy =(R + S)/N, a critical (but stable) site; the additional ring denotes a
supercritical site which must then relax. The open circles
u=F+Y+ W+ G)/N, denote sites which have relaxed, and the asterisks denote

) the spillage of sand into the neighboring diamonds. Shown
V\{h?re N=x1 +u +v +z .normallzes the_ proba- is the dynamical path which generatesPaevent (see text).
bilities. The last three expressions are self-evident (com¢b) The nine2 X 2 cell relaxation events.
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the enumeration process and of the resulting RG mag 1 - . -
in generating Eq. (1) there are only 106 distinct paths .1 .

to consider, rather than many thousands of paths for th o
nondirected models [2]; the resulting map in the latter o001
case has hundreds of terms. The relative simplicity of the
present map makes the subsequent analysis consideral
easier.] We are now ready to explore and test the varioue- 0.0001
consequences of the RG map.

The first result comes from iterating the RG map
starting from the initial condltlon corresponding to the 1eo0s | 1
DR model(xg, ug, vo, 20) = (2,0 0,2) Under successive
iterations of the RG map, the induced orbit is attractec
to the fixed point(0.373, 0.206, 0.206,0.215). Following 16-008 ' ' x :
Ref. [2] let K(s) be the conditional probability that ! 10 T 10000100000
an avalanche fails to propagate beyond scale 1 o
given that it propagates to scale This is related FIG. 3. Avalanche distribution for the rule (0.25, 0.25, 0.25,
to the toppling amplitudes vik = (zx?> + ux + vx + and 0.25).
2uvx + zx’v + zx’u)/(1 — x), where the numerator is
the probability of not propagating out of a compositewe have an explicit representation of the map, we can
cell and the denominator is the probability that thecalculate thet X 4 Jacobian matrix analytically. The four
avalanche propagates beyond the previous scale. gigenvalues corresponding to the above mentioned fixed
general, successive values &f along the orbit allow point are found to b®.000,0.001,0.499, and1.421. The
one to reconstruct the avalanche area distribution scalew prediction is that, since one of the eigenvalues has a
by scale. Near the fixed poink approaches a constant magnitude bigger than unity, the fixed point is unstable.
K* and the avalanche distribution approaches a powefhe surprise is that two of the eigenvalues are (nearly)
law with K* = 1 — 220-7)_ Using the fixed point values zero. Let's consider each of these two facts in turn.
yields 7 = 1.325, in excellent agreement with the exact Consider first the unstable eigenvalue. It existence
value4/3. means that there are models which fall outside the DR

The second consequence we can test concerns th@iversality class. (Indeed, it means thatatypical model
universality of this exponent. For example, we canfalls outside of it.) We can identify the DR universal-
simulate a model with a different relaxation rule thanity class by considering the (left) eigenvector correspond-
DR, say where the three different relaxation events arég to the unstable eigenvalue. 1t (8,1, —1,0), and is
chosen with equal probability. In our space of modelstherefore orthogonal to the subspage= vo. Figure 4
th|s corresponds to the initial conditidmg, uo, vo,z0) =  Shows a sketch of the phase space flow inithe plane.

(4 4 4 4) By iterating the RG map, we find the resulting The fixed point lies on the lin@ = v, and its instabil-
orbit is attracted to the same fixed point as beforejty implies that models which break the left-right sym-
consequently, in the scaling regime we expect to recovemetry should fall outside of the DR universality class.
the same exponent. Figure 3 shows the avalanche ardde tested this by simulating the model corresponding to
distribution resulting from numerical simulations using (xo, uo, vo, z0) = (3, ,;,3) and found a scaling region
this “mixed” rule. As expected, a scaling region with with an avalanche exponent= 1.29, which is close to but
exponentl.33 is obtained. clearly distinguishable from the DR exponent= 4/3.

A third consequence of the theory is thae scaling While these last data verify one prediction of the
regime should extend all the way down to the smallestheory, it contradicts another one: namely, we shouldn’t
length scalesfor the particular microscopic model cor- expect to see scaling behavior at all. Starting from
responding to the fixed point, namelyo, uo, vo,z0) = this initial condition, successive iterates of the RG map
(0.373,0.206,0.206,0.215). That is, we simulate a model are attracted to the fixed poird,0,1,0) (see Fig. 4),
where for each relaxation event, we choose one of theorresponding t&™* = 0, which implies thatP(s) decays
three rules in the rati0.206:0.206:0.215 for spilling one  more slowly thanl/s. Clearly, since this cannot hold
grain to the left, one to the right, and one each to then the infinite size limit, this situation forces us to
left and right, respectively. Figure 1 shows the results oftonsider what happens at the boundaries. It is therefore
these simulations together with those for the DR modepossible that boundary effects are dominating the data.
for comparison. Indeed, the fixed point model shows exAnother possibility lies in the singularity of the avalanche
cellent scaling behavior at even the smallest scales. distribution for any rule withe = 0. These rules have all

We can learn still more by studying in detail the RG sites critical (since there is zero probability of absorbing
map in the vicinity of the fixed point, and this leads usa grain), and the pile is always in the minimally stable
to another prediction, and also our first surprise. Sincestate. Avalanches are then of one size only—the system
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point shows power law scaling down to the smallest
u length scales, and (iv) that a model which breaks the
left-right symmetry in the relaxation rule falls outside of
the DR universality class. However, in this last instance,
simulations show nontrivial scaling behavior which is not

expected from the RG map.
« The lone discrepancy shows that at least some modifi-

cation is needed, although it is unclear whether the flaw
resides in our particular construction of the transforma-
s tion or is more fundamental. There is also a question
N whether this level of agreement is peculiar to certain types
of models (e.g., directed models have the special property
Vv that there are no back avalanches) and will grow worse
when extended to include a more general class of mod-
FIG. 4. Phase space flow projected onto thev plane, €ls. Taken as a whole, however, the level of agreement
u + v = 1. The nontrivial fixed point attracts all points with is quite good, suggesting that a real space RG approach
u = v symmetry, but is unstable with respect to breaking thisjs g promising avenue for a fundamental understanding of
S}/n?mgtry. The fixed point$l,0) and (0,1) are stable, and self-organized criticality.
(3. 7) is unstable. We thank Jacques Amar, Per Bak, Stefan Boettcher,
Maya Paczuski, and Ram Ramaswamy for stimulating
size—and the distribution is singular. Regardless, théliscussions. This work was supported in part by the
existing theoretical framework does not include suchOffice of Naval Research under Grant No. N00014-91-J-
considerations.

Finally, we turn our attention to the (nearly) double-
zero eigenvalues of the DR fixed point. This is a subtle
issue, but nevertheless a provocative one. We know from
the general theory of iterative maps that the appearancg1] v. Frette, K. Christensen, A. Malthe-Sorenssen, J. Feder,
of a zero eigenvalue is special: it often signals that the  T. Jossang, and P. Meakin, Nature (Lond@%9 49
map has some special (i.e., nongeneric) property. In fact, (1996); H.M. Jaeger, C.H. Liu, and S.R. Nagel, Phys.
we can prove that one eigenvalue must be exactly zero, Rev. Lett.62, 40 (1989); H.J.S. Feder and J. Feder, Phys.
since the RG map conserves probability, ixg.,+ u, + Rev. Lett. 66, 2669 (1991); A. Johansen, P. Dimon, C.
v, + z, = 1. This is a special property viewed from the Ellegaard, J.S. Larsen, and H. H. Rugh, Phys. Re48E
general perspective of iterative maps, although, of course 4779 (1993). _ ) .
it is a necessary property due to the physical meaningm L. Pietronero, A. Vespignani, and S. Zapperi, Phys.

Rev. Lett. 72, 1690 (1994); A. Vespignani, S. Zapperi,
of the RG theory. The real puzzle concerns the other and L. Pietronero, Phys. Rev.&, 1711 (1995).

(nearly) zero eigenvalue. It could be that it just happens[g] D. Dhar, Phys. Rev. Let64, 1613 (1990).

to be very very small, but it is suspiciously close t0 [4] p. Bak and M. CreutzFractals and Disordered Systems
zero. (Recall that our RG construction is not exact, SO ~ (Springer-Verlag, Berlin, 1994), a ed., Vol. II.

0.001 may well indicate zero for the “true” map.) If [5] J.M. Carlson, J.T. Chayes, E.R. Grannan, and G.H.
the eigenvalue is indeed constrained to be zero, what is  Swindle, Phys. Rev. Let65, 2547 (1990).
the underlying structural reason? We haven't found an[6] S. Boettcher and M. Paczuski, Phys. Rev.5E 1082
answer, and leave it as an open question. (One can readil¥ (1996).
check that it doesiot follow from local conservation of 171 A. Ben-Hur, R. Hallgass, and V. Loreto, Phys. RevS&
sand.) 1426 (1996).

In summary, we have constructed a real space RGLE! Dl.glggar and R. Ramaswamy, Phys. Rev. L€, 1659
map for a class of directed sandpile automata, and teste ( )

) L ) ] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. LBf.
several of its predictions. The theory accurately predicts™ ~ 3¢ (1987).

the following: (i) the value of the exponent in the case[1g] sincex is the probability that a site is noncritical, — x

where it is known exactly, (ii) its universality for a model corresponds to the density of critical sitpsin the PVZ
with a different but symmetric relaxation rule, (iii) that [2] scheme. Our inclusion of as a probability amplitude
the particular model corresponding to the nontrivial fixed leads to a different normalization condition.
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