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Figures and equations in the main text are referenced using a superscript letter “M”. For
example, Eq. (1) in the main text would be referenced as Eq. (1)M .

I. COARSE-GRAINED MUTATION DYNAMICS

Here, we will give a formal argument to show that, for sufficiently small µ, mutations in
the model

X
α(1−µ)−−−−→ 2X (1a)

X
αµ−→ X + Y (1b)

Y
(1+s)α−−−−→ 2Y (1c)

occur according to a Poisson process with rate αµnX , where nX is the time-averaged number
of wild-type cells for µ = 0. The argument is based on the separation of time scales between
the fast fluctuations in population size and rare mutations, similar to the derivation of the
slow-scale stochastic simulation algorithm in Ref. [1]. However, in our case, it is necessary
to consider the properties of the population dynamics not described by the reactions of
Eq. (1) themselves. For a constant population, the statement above is clearly true since
nX = nX for all times and therefore the rate of Eq. (1b) is αµnX by definition. However, as
we will show below, the same formula is also a good approximation for the rate of mutations
in the periodic dilution scenario if µ is small.

For simplicity, the number of wild-type individuals nX will be denoted as x in this section.

Assume that there are currently no mutant cells in the population. What is the prob-
ability density pnext(t) for the next mutation to occur at some time t > 0? If we split up
the interval from 0 to t into M ∈ N equally spaced intervals ∆t = t/M , the probability of
no mutation occuring in the ith subinterval is 1 − αµx(i∆t)∆t. As the probability for a
mutation occuring between t and t+ dt is αµx(t) dt,

pnext(t) dt = αµx(t) dt · lim
M→∞

M∏
i=1

[
1− αµx

(
i
t

M

)
t

M

]
. (2)

Taking the log of the second factor allows us to convert it to the integral

lim
M→∞

log
M∏
i=1

[
1− αµx

(
i
t

M

)
t

M

]
= lim

M→∞

M∑
i=1

log

[
1− αµx

(
i
t

M

)
t

M

]

= −αµ lim
M→∞

M∑
i=1

x

(
i
t

M

)
t

M

= −αµ
∫ t

0

x(τ) dτ.

Substituting this into Eq. (2) yields

pnext(t) = αµx(t) · exp

(
−αµ

∫ t

0

x(τ) dτ

)
(3)

This is the exact probability density for the time of the next mutation. The following
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argument holds if the dynamics of x is made up of short time intervals (called “cycles”
hereafter according to the model in the main text, but the logic applies more generally) that
are all statistically identical, which is the case for the periodic dilution scenario. Then, let
∆tmeso be some mesoscopic time period, where mesoscopic means that it is large compared
to the length of the cycles and small compared to the time scale on which the second
(exponential) factor of Eq. (3) changes. Choosing ∆tmeso is always possible if µ is sufficiently
small. This choice implies that x averaged over ∆tmeso is close to nX and that there are
close to ∆tmeso/T cycles within that time period, where T is the average length of the cycles
(in the case of periodic dilutions, the length of all cycles is exactly T ). The probability that
the next mutation will occur anywhere within [t, t+ ∆tmeso] is

p̃next(t)∆tmeso =

∫ t+∆tmeso

t

αµx(t′) · exp

(
−αµ

∫ t′

0

x(τ) dτ

)
dt′ (4)

=

[
− exp

(
−αµ

∫ t′

0

x(τ) dτ

)]t+∆tmeso

t

(5)

= exp

(
−αµ

∫ t

0

x(τ) dτ

)[
1− exp

(
−αµ

∫ t+∆tmeso

t

x(τ) dτ

)]
(6)

≈ αµnX exp

(
−αµ

∫ t

0

x(τ) dτ

)
∆tmeso, (7)

where the last step was possible due to the mesoscopic scale of ∆tmeso. Because αµ is assumed
to be sufficiently small, the integral will already be close to nXt when the argument to the
exponential deviates substantially from zero. Replacing this term yields:

p̃next(t)∆tmeso = αµnX exp(−αµnXt)∆tmeso. (8)

This confirms the intuitive fact that, on a coarse-grained time scale (where the fluctuations
of the population size are averaged out), mutations occur according to a Poisson process
with rate αµnX and, therefore, the average period of mutations is Tmut = (αµnX)−1.

After a mutation has occurred, the population consists of both Xs and Y s, but only
for a transitional homogenization period τhom, until the mutation has either been fixed or
eliminated. For each single mutation τhom will depend on the state the population was in
when the mutation was introduced. However, if the typical τhom is much smaller than the
typical period τmut at which mutations occur (i.e. for small enough µ), then the transient
coexistence of wild-type and mutant individuals will not significantly alter the statistics and
the fixation time is

τ =
τmut

p
+ τ+

hom ≈
τmut

p
= (αµnXp)

−1, (9)

where p is the probability that a mutation occurring at unknown time and population state
will eventually become fixed. τ+

hom is the homogenization time conditioned on the fixation
of the mutation. However, the contribution to τ is small if τmut is large and hence we ignore
it after the first step in Eq. (9).
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II. PROBABILITY OF MUTATION WITHIN A CYCLE

In general, the fixation probability of a mutation can depend on the time it is intro-
duced and the state of the population at that time. To calculate the unconditional fixation
probability p for an arbitrary mutation, it is therefore necessary to know the probability
distribution of the introduction of a mutation across different times and states.

Assume that no mutation has occurred up to time t. As shown above, for sufficiently
small µ, there exists a time scale ∆tmeso spanning several cycles, on which the exponential
factor in Eq. (3) does not change significantly. Therefore, the probability distribution for
the time to the next mutation (i.e. when reaction (1b) fires next) is proportional to αµx(t)
for several cycles, without the dampening factor. Because T < ∆tmeso, the same is certainly
true for the next complete cycle. In addition, all the cycles are assumed to be statistically
identical. Therefore, the timing of the next mutation within the cycle in which it occurs
does not depend on t (the time before which no mutation has occurred). This means that
there is a universal probability pmut(x

∗, θ) that the next mutation happens at time θ into
a cycle (in our case, the time since the last dilution event), when there are x∗ wild-type
individuals. Since pmut(x

∗, θ) ∝ αµx∗, the probability is given by

pmut(x
∗, θ) dθ =

px(x∗, θ) · x∗ dθ
∞∫
0

∞∑
k=0

px(k, θ′) · k dθ′
, (10)

where px(x
∗, θ) is the probability that the population has size x∗ at time θ into the cycle.

For our specific case in the main text, only pmut(θ) is required, i.e. the probability that the
next mutation occurs at time θ after the last dilution event. We obtain this probability by
summing over all possible x∗:

pmut(θ) =
∞∑
k=0

pmut(x
∗, θ) =

∞∑
k=0

px(k, θ) · k dθ

∞∫
0

∞∑
k=0

px(k, θ′) · k dθ′
=

m1(Ns;α; θ)
∞∫
0

m1(Ns;α; θ′) dθ′
, (11)

where m1 is the first moment of the population size. Since every cycle starts with Ns indi-
viduals which are constantly dividing with rate α, the first moment is simply m1(Ns;α; θ) =
Ns exp(αt), leading to

pmut(θ) =
exp(αθ)

T∫
0

exp(αθ′) dθ′
. (12)

III. DIFFUSION APPROXIMATION FOR CONSTANT POPULATION

Although the fixation probability for a constant population was successfully derived in
Eq. (5)M as a limit of the dynamic case, a more accurate approximation—without taking
into account the effect of ξ2—can be obtained directly by treating each division event as a
“generation” in the context of Kimura’s diffusion theory:
The probability that a non-mutant will divide next is Nc(1−y)α/[Nc(1−y)α+Ncyα(1+s)] =
(1− y)/[(1− y) + y(1 + s)], where y is the fraction of mutants in the population. Similarly,
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the probability of a mutant dividing next is y(1 + s)/[(1− y) + y(1 + s)]. For the number of
mutants in the population to change, either a mutant has to divide and then a non-mutant
is chosen to be removed, or vice versa. The probability for the removal of a non-mutant
after a mutant has divided is (1− y)/(1 + 1/Nc), whereas the probability for the removal of
a mutant after a non-mutant has divided is y/(1 + 1/Nc). Therefore, the mean change in
one cell division is:

Mδy,c(y) =
1

Nc

[
y(1 + s)

1− y + y(1 + s)
· 1− y

1 + 1/Nc

− 1− y
1− y + y(1 + s)

· y

1 + 1/Nc

]
(13)

=
sy(1− y)

(1 + sy)(Nc + 1)
(14)

Similarly, the second moment is (s+2)y(1−y)
Nc(1+sy)(Nc+1)

and therefore, the variance evaluates to:

Vδy,c(y) =
(s+ 2)y(1− y)

Nc(1 + sy)(Nc + 1)
−
(

sy(1− y)

(1 + sy)(Nc + 1)

)2

(15)

=
(s+ 2)y(1− y)(1 + sy)(Nc + 1)−Ncs

2y2(1− y)2

Nc(1 + sy)2(Nc + 1)2
. (16)

Dividing the two equations yields

Mδy,c(y)

Vδy,c(y)
=

sNc(1 + sy)(Nc + 1)

(s+ 2)(1 + sy)(Nc + 1)−Ncs2y(1− y)
. (17)

Expanding about s = 0 shows that to second order,
Mδy,c(y)

Vδy,c(y)
is independent of y:

Mδy,c(y)

Vδy,c(y)
=
Nc

4
s(2− s) +O(s3) (18)

We can therefore use Λc = Ncs(2 − s)/4 in Eq. (2)M to calculate uc(y). In this case, every
mutation starts with a single mutant cell in a population of Nc + 1 cells. To be fixed,
the mutation has to survive the removal step of the Moran process and then become fixed
starting from a frequency 1/Nc, finally leading to

pc =
Nc

Nc + 1
uc(1/Nc) =

Nc

Nc + 1
·

1− exp(−1
2
s(2− s))

1− exp(−Nc
2
s(2− s))

. (19)

We can read off Eq. (19) that ȳc = 1/(Nc + 1) if we wanted to use pc ≈ uc(ȳc) in analogy
with the dynamic case. Note that Eq. (5)M (for ξ2 = 1) is just a less accurate version of
Eq. (19), which assumes Nc/(Nc + 1) ≈ 1 and uses only a first-order approximation for Λc.
The two formulas converge for large Nc and small s, and therefore, Eq. (19) would still lead
to the same result for the asymptotic fixation time ratio ∆ in Eq. (7)M .

IV. DIFFUSION APPROXIMATION FOR PERIODIC DILUTION: Λd

To calculate Λd, we note that the first and second moment a population of cells that
starts out with N0 cells and then grows by dividing with a rate λ are given by

m1(N0, λ, t) = N0 exp(λt) (20a)

m2(N0, λ, t) = N0 exp(λt)[(ξ2 +N0) exp(λt)− ξ2] (20b)
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for ξ2 = 1. These moments can be evaluated at t = T to obtain the mean and variance
contributed by the growth cycle for each sub-population, i.e. non-mutants and mutants,
which start out with (1− y)Ns and yNs cells. In general, for a population starting with N0

individuals and dividing with rate λ, the mean Mλ(N0) and the variance Vλ(N0) evaluate
to:

Mλ(N0) = N0 exp(λT ) (21a)

Vλ(N0) = N0 exp(λT )[(ξ2 +N0) exp(λT )− ξ2]−N2
0 exp2(λT )

= ξ2N0 exp(λT )[exp(λT )− 1] (21b)

Note that ξ2 in Eq. (20b) effectively scales the variance here. Assume the fraction of mutants
at the beginning of a cycle is y. What we are first interested in are the mean and variance
of the fraction of mutants at the end of the growth phase as a function of y. Since y =
nY /(nX + nY ), we use second and first-order approximations for the mean and variance of
a ratio, respectively: 〈a

b

〉
≈ 〈a〉
〈b〉
− cov(a, b)

〈b〉2
+

var(b)〈a〉
〈b〉3

(22a)

var
(a
b

)
≈ 〈a〉

2

〈b〉2

[
var(a)

〈a〉2
− 2

cov(a, b)

〈a〉〈b〉
+

var(b)

〈b〉2

]
(22b)

In our case, a = nY and b = nX + nY , where nX and nY are uncorrelated and so cov(a, b) =
var(nY ). Therefore, all means and variances necessary for the above approximation can be
calculated exactly from Eq. (21), giving approximations for the mean fraction of mutants
Mend(y) at the end of the growth cycle and its variance Vend(y) introduced by the growth
process:

Mend(y) =
Mα(1+s)(yNs)

Mα(1+s)(yNs) +Mα((1− y)Ns)
−

Vα(1+s)(yNs)

[Mα(1+s)(yNs) +Mα((1− y)Ns)]2

+
[Vα((1− y)Ns) + Vα(1+s)(yNs)]Mα(1+s)(yNs)

[Mα(1+s)(yNs) +Mα((1− y)Ns)]3

Vend(y) =

(
Mα(1+s)(yNs)

Mα(1+s)(yNs) +Mα((1− y)Ns)

)2

·[
Vα(1+s)(yNs)

[Mα(1+s)(yNs)]2
− 2

Vα(1+s)(yNs)

[Mα(1+s)(yNs) +Mα((1− y)Ns)] ·Mα(1+s)(yNs)

+
Vα((1− y)Ns) + Vα(1+s)(yNs)

[Mα(1+s)(yNs) +Mα((1− y)Ns)]2

]
The dilution itself is the selection of Ns cells according to a hypergeometric distribution.
For a mean growth cycle with a fraction of z = Mend(y) mutants at the end, this selection

process will have a meanNsz and varianceNsz(1−z)
Ntotal

end −Ns
Ntotal

end −1
, whereN total

end = Mα(1+s)(yNs)+

Mα((1−y)Ns) is the total number of cells at the end of the cycle, before the dilution happens.
Dividing by Ns and N2

s , respectively, yields the mean fraction of mutants after selection and
the variance due to the selection process alone:

Mselect(y) = Mend(y) (23)

Vselect(y) =
1

Ns

Mend(y)(1−Mend(y))
Mα(1+s)(yNs) +Mα((1− y)Ns)−Ns

Mα(1+s)(yNs) +Mα((1− y)Ns)− 1
(24)

6



However, in reality, z is itself a random variable with variance Vend(y). If this variance is
small, such that the variance of the selection process is approximately constant for different
possible z around z = Mend(y), then the variances just add up. Thus, we have for the
periodic dilution case (subscript d)

Mδy,d(y) = Mend(y)− y (25)

Vδy,d(y) = Vend(y) + Vselect(y). (26)

Expanding Mδy,d/Vδy,d around s = 0 reveals that it is independent of y up to first order:

Mδy,d

Vδy,d
=

(Ns − ξ2)(fNs − 1)f log(f)

(f − 1)(fNs(1 + ξ2)− ξ2)
s+O(s2), (27)

where f = exp(αT ) as in the main text. Thus we obtain

Λd =
(Ns − ξ2)(fNs − 1)f log(f)

(f − 1)(fNs(1 + ξ2)− ξ2)
s (28)

≈ (Ns − ξ2)f log(f)

(f − 1)(1 + ξ2)
s. (29)

In the last step, we neglected the small additive corrections to fNs terms in the enumerator
and the denominator.

V. DIFFUSION APPROXIMATION FOR PERIODIC DILUTION: ȳd

To estimate the average initial fraction of mutants ȳd, we consider the growth cycle in
which the mutation first occurs: The probability of a mutation due to reaction (1b) in a time

interval dθ is dθ ·px(x, θ) ·x/
∫ T

0

∑∞
x=Ns

px(x, θ
′) ·x dθ′ according to Eq. (10) (for small µ). If

the mutation happens at time θ into the cycle, the expected number of mutants at the end
of the cycle is given by m1(ms;α(1+s);T −θ) = ms exp[(1+s)α(T −θ)], where m1(N0;λ; t)
is defined as in Eq. (20) and ms is the initial size of the mutant subpopulation. Therefore,
the first moment for the number of mutants at the end of the initial cycle (subscript mi)
can be calculated as

m1,mi =

∫ T

0

∞∑
x=Ns

m1(ms;α(1 + s);T − θ) px(x, θ) · x∫ T
0
m1(Ns;α; θ′) dθ′

dθ (30)

=
msf(f s − 1)

s(f − 1)
(31)

Similarly, the expected number of w ildtype individuals at the end of the initial cycle (sub-
script wi) is m1(x, α;T − θ) = x exp[α(T − θ)], yielding

m1,wi =

∫ T

0

∞∑
x=Ns

x exp[α(T − θ)] px(x, θ) · x∫ T
0
m1(Ns;α; θ′) dθ′

dθ

= f

[
Ns + ξ2

(
1− log(f)

f − 1

)]
(32)

by realizing that the sum over all the x-dependent terms under the integral simply evaluates
to m2(Ns;α; θ). Setting ξ2 = 1 and ms = 1, it is noteworthy that, even in the limit of
s → 0 (i.e. mutants having the same growth rate as non-mutants), the sum of the two
terms (31) and (32) becomes (1 +Ns)f , which means that the population on average has a
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larger size at the end of a cycle, if a mutation is introduced, than it has otherwise. In fact,
even the number of non-mutants is larger than usual at the end of these cycles, because
log(f)/(f − 1) is smaller than 1 for all f > 1 in Eq. (32). This is due to the fact that the
cases we select from the set of all cycles to calculate this average are conditioned on the
introduction of a mutation, which is more likely to happen at larger population sizes and
therefore introduces a bias. Consistently, Eq. (32) converges to exactly fNs if there are no
population size fluctuations during growth, corresponding to ξ2 = 0.
Eqs. (31) and (32) lead to the estimate

ȳd ≈
m1,mi

m1,wi +m1,mi

≈ (f s − 1)ms

s(f − 1)Ns

, (33)

where the last step is valid for large Ns. Since ȳd is in fact a ratio of two random quantities,
we also calculated higher moments and the covariance of the two subpopulations in the
initial cycle to obtain a more accurate estimate of ȳd with the help of Eq. (22), as done in
section IV for Λd. However, we found that the more accurate value of ȳd does not lead to
appreciable changes in the predictions, in particular in Fig. 2M a and b. Moreover, ȳd still
becomes independent of ξ2 for large Ns. Therefore, we chose the approximation with the
simpler formula, which is Eq. (33).

VI. RANGE OF s-DEPENDENCE FOR SMALL POPULATION SIZES

Equation (7)M specifies the the asymptotic ratio of fixation probabilities ∆ for large
populations and small s. Combined with the slope at s = 0 from Eq. (6)M , this allows for
an order-of-magnitude estimation of the range δs of (small) selective advantages where the
fixation probability ratio actually depends on s. By assuming that the linear relationship of
Eq. (6)M holds until pc/pd reaches ∆(f), we get

δs ∼ (f − 1)(1 + ξ2)

fNs log(f)
. (34)

While this only gives a rough estimate, it can be useful in determining whether mutations in a
given range of selective advantages are in danger of unequal suppression by the experimental
protocol, which might be undesirable for experimental evolution experiments. In accordance
with Fig. 2M b, Eq. (34) shows that δs is reduced for increasing population sizes.

VII. BRANCHING PROCESS APPROXIMATION FOR PERIODIC DILUTIONS

Conceptually, the calculation of pd in the branching process limit simply requires substi-
tuting the rates of Eq. (10)M into Eq. (8)M , taking the limit σ → 0 and finally weighting
the result appropriately for different θ. In practice, however, the calculation is rather non-
trivial, so it is carried out explicitly in this section.
First, consider the integral

I =

∫ ∞
0

(λ+ δ)(t) exp

(
−
∫ t

0

(λ− δ)(τ) dτ

)
dt, (35)

which can be split up into several integrals Ii, each from t = ti = i · (log f)/α− θ to t = ti+1.
We take I0 to mean the first integral from t = 0 to t = t1, which is the only integral that
does not contain a period σ of pruning and has a length of T − θ instead of T . For i = 0,
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the integrands therefore reduce to

(λ+ δ)(t) = α(1 + s) (36)

−
∫ t

0

(λ− δ)(τ) dτ = −α(1 + s)t. (37)

In contrast, for i = 1, 2, . . . , they evaluate to

(λ+ δ)(t) = α(1 + s) + log f ·

{
1
σ

for 0 < t− ti < σ

0 otherwise
(38)

−
∫ t

0

(λ− δ)(τ) dτ = −α(1 + s)t+ log f ·

{
i− 1 + t−ti

σ
for 0 < t− ti < σ

i otherwise
(39)

The integrals can then be calculated as

I0 = 1− exp(α(1 + s)θ)f−(1+s) (40)

Ii = f−is · f
−(s+2) exp(α(1 + s)θ)[(f 1+s − f)α(1 + s)σ + (f + f 1+s − 2 exp(−α(1 + s)σ)f 2+s) log f ]

α(1 + s)σ − log f
.

(41)

The only i-dependent term in Ii is f−is, so I =
∑∞

i=0 Ii can be calculated using the geometric
series. Using Eq. (8)M , the fixation probability for finite σ is then given by

pd(θ, σ) =
2

1 + I
=

[
1 +

exp(α(1 + s)θ)(1− exp(−α(1 + s)σ)f) log f

(f 1+s − f)(α(1 + s)σ − log f)

]−1

(42)

We obtain the fixation probability for instantaneous selection and mutations occurring at
time θ into a cycle by taking the limit σ → 0:

pd(θ) =

[
1 +

exp(α(1 + s)θ)(f − 1)

(f 1+s − f)

]−1

(43)

With the probability that a mutation actually occurs at time θ into the cycle from Eq. (12),
the unconditional fixation probability pd therefore is

pd =

T∫
0

exp(αθ)pd(θ) dθ

T∫
0

exp(αθ) dθ

=
α

f − 1

T∫
0

exp(αθ)

[
1 +

exp(α(1 + s)θ)(f − 1)

(f 1+s − f)

]−1

dθ, (44)

where T = (log f)/α. The integrand is of the form Ax(a+ bBx)−m, which has the indefinite
integral ∫

Ax(a+ bBx)−m dx = (logA)−1a−mAx2F1

(
m,

logA

logB
;

logA

logB
+ 1;−bB

x

a

)
(45)

In our case, A = exp(α), B = exp(α(1 + s)), a = 1, b = f−1
f1+s−f , and m = 1, so the indefinite

integral of the integrand in Eq. (44) is

α−1 exp(αθ)2F1

(
1, 1/(1 + s), 1 + 1/(1 + s),− f − 1

f 1+s − f
exp(α(1 + s)θ)

)
.
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Subtracting the values at the integral limits 0 and T = (log f)/α then yields the result
shown in Eq. (11)M :

pd =
1

f − 1

[
f 2F1

(
1,

1

1 + s
; 1 +

1

1 + s
;− f − 1

f 1+s − f
f 1+s

)
− 2F1

(
1,

1

1 + s
; 1 +

1

1 + s
;− f − 1

f 1+s − f

)]
(46)

VIII. RATIO OF FIXATION PROBABILITIES IN THE BRANCHING PROCESS

APPROXIMATION

The fixation probability pc = s/(1 + s) can easily be calculated directly from Eq. (8)M

as described in the main text. However, it is worth noting that, as for the diffusion theory,
pd can be used for the constant population case by letting f tend to 1. In this case, it is
particularly simple, since the limit f → 1 also implies that θ → 0, because the length of
growth phase tends to zero as f → 1. Therefore, we can use the intermediate result of
Eq. (43) to obtain

pc = lim
f→1

lim
θ→0

pd(θ) = lim
f→1

[
1 +

(f − 1)

(f 1+s − f)

]−1

=

[
1 +

1

s

]−1

(47)

=
s

1 + s
(48)

To determine the asymptotic ratio pc/pd for s → 0 from the branching process approxima-
tion, it is actually easier to use again the intermediate result of Eq. (43) instead of carrying
out the limit directly based on Eq. (46). As pc does not depend on θ, we can first determine

lim
s→0

pd(θ)

pc
= exp(−αθ)f log f

f − 1
. (49)

Integration with the probability pmut(θ) for the occurrence of a mutation at time θ into the
cycle from Eq. (12) then leads to

lim
s→0

pd
pc

=

∫ T

0

pmut(θ) lim
s→0

pd(θ)

pc
dθ =

T∫
0

f log f
f−1

dθ

T∫
0

exp(αθ) dθ

(50)

= f

(
log f

f − 1

)2

, (51)

which is the inverse of the desired quantity ∆.

IX. COMPARISON WITH LIMITING CASES FOUND IN PREVIOUS STUDIES

To obtain analytical results, previous studies of the fixation probability in bottlenecked
populations have focused mainly on the regime of large population sizes and small selective
advantages [2, 3]. While our analytical approximations in the main text cover finite pop-
ulation sizes as well as larger selective advantages, they include the large population limit
for small selective advantages, and we showed that both the diffusion approximation and
the branching process approximation yield the same result in this particular limit, namely

10



Eq. (7)M , according to which the fixation probability in this limit is reduced by a factor of

pd
pc

= f

(
log f

f − 1

)2

(52)

for serial passage with a dilution factor f . The result seems to contradict the fact that an
optimal dilution factor was found in previous studies, because it converges monotonically
to 1 for f → 1.

First, in Ref. [2], the reduction factor for the fixation probability was calculated to be

D(logD)2 = (log f)2/f, (53)

which has an optimum. This result is based on an earlier calculation by the same group
according to which the fixation probability for a mutation occurring at time θ into a cycle
for a cycle length T and wildtype growth rate α is (equation 12 in Ref. [4])

2s
αT

exp(αθ)
. (54)

As we will show below, this approximation is only valid for large f (small D), in which
case Eq. (52) and Eq. (53) indeed agree. Intuitively, the inapplicability of Eq. (54) for
dilution factors close to 1 can be seen as follows: For a constant wild-type growth rate, we
expect the fixation probability to converge to that of a constant population as T → 0 (and
f → 1), because diluting very often by a factor close to 1 is experimentally indistinguishable
from keeping the population constant. However, Eq. (54) converges to 0 for T → 0. The
reason for this discrepancy lies in authors’ use of a binomial distribution to approximate
the sampling process. The variance of the binomial distribution for selecting Ns individuals
when the mutant ratio (i.e. the probability of selecting a mutant) is y = nY /(nX + nY ) is

Nsy(1− y). (55)

In reality, however, the sampling process is from a finite population, and so the hyperge-
ometric distribution is appropriate. In this case, the variance for selecting Ns out of fNs

individuals when the mutant ratio is y = nY /(nX + nY ) is

Nsy(1− y)
fNs −Ns

fNs − 1
, (56)

which converges to Eq. (55) only for large f . For f closer to one, however, Eq. (55) greatly
overestimates the variance, because Eq. (56) converges to zero in this limit. The gravity of
this difference can be seen in the extreme case f = 1, when the whole population is selected
for the next cycle. According to the binomial distribution, the number of mutants at the
beginning of the next cycle would be a random quantity, whereas in reality (and according
to the hypergeometric distribution), the number of mutants should be exactly the same as
just before the dilution event. The overestimated stochasticity upon dilution leads to an
underestimation of the fixation probability in Eq. (54) for f close to 1 (i.e. short T ): Mδy

approaches 0 as f → 1 (and therefore T → 0), because there is no time for the fraction of
mutants to change during the growth phase. If the binomial distribution is used, Vδy stays
finite according to Eq. (55) and therefore Mδy/Vδy → 0 as f → 1. In contrast, both Mδy

and Vδy approach 0 as f → 1 if the more realistic hypergeometric distribution is used, which
leads to a consistent behavior of the fixation probability as f → 1, as shown in the main
text. Therefore, we conclude that Eq. (54) [4] and the factor (53) derived from it in Ref.
[2] are only valid for large f and the optimum is an artifact stemming from the unphysical
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behavior of the approximation towards f = 1.

The situation is different for the optimum found in Ref. [3]. The optimal dilution ratio
for large populations and small s there is not found for the fixation probability (the quantity
calculated in Ref. [2] and the present study), but for the fixation rate per cycle, derived as

µfNs
D(logD)2

1−D
s = µNs

(log f)2

1− 1/f
s = µNs

f(log f)2

f − 1
s (57)

in equation 12 of Ref. [3]. However, if the organism in question has a constant division
rate and the only parameter that is varied experimentally is the dilution factor (and hence
the dilution interval), then the fixation rate per unit time is a more appropriate measure of
the adaptation rate of the population (the fixation rate per cycle might get smaller as the
dilution factor approaches 1, but more cycles fit in a given time span). Using the authors’
convention of a division rate equal to 1, the cycle length is T = log(f), and so Eq. (57) can
be converted to a the fixation rate per unit time by dividing by T :

µNs
f log f

f − 1
s (58)

As expected, the above equation converges to µNss for f → 1, i.e. the fixation rate in
a constant population of Ns individuals dividing with rate 1. Furthermore, it increases
monotonically with f , such that there is no optimum, and therefore diluting the population
more severely always leads to the loss of more beneficial mutations, if all other parameters
are kept constant. In fact, our analysis yields the same fixation rate as in Eq. (58): The
fixation rate per time is simply the number of mutations occurring per time multiplied by
the fixation probability. The number of mutations per unit time for a growth rate of α = 1
is Ns(f − 1)/ log(f)µ, and the fixation probability for large populations and small s is

f

(
log f

f − 1

)2

s (59)

which is implied by Eq. (7)M or can be seen directly from Eq. (4)M by first taking the limit
Ns →∞ and subsequently considering small s. Multiplying the two yields

Nsµf
log f

f − 1
s, (60)

which is identical to Eq. (58). Our results are therefore consistent with Ref. [3]. However,
the optimal dilution ratio found therein maximizes the fixation rate per cycle, which might
be important for specific scenarios but is not the relevant quantity for the experimental
situation we are considering: a population of cells dividing with fixed rate where only the
dilution factor (and thus the dilution interval) can be chosen.

X. DENSITY-TRIGGERED DILUTION

In the main text, the population was pruned to Ns individuals periodically with period T .
In this way, the population on average reaches a size of fNs individuals before it is diluted,
but the final size in individual cycles fluctuates due to the stochasticity of division times.
We tested whether our results depend on the exact periodicity of the pruning and carried
out numerical simulations where the population is reduced to Ns individuals once it reaches
a fixed size fNs. Now, instead of the final size, the period is a random quantity. Figures 1
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FIG. 1. Reproduction of Figure 2M with numerical results for density-triggered instead of periodic

dilutions. (a) Fixation probabilities from numerical simulations (symbols) compared to diffusion

approximation, Eqs. (5)M , (4)M (lines). (b) τd/τc from numerical simulations (symbols) and

diffusion approximation (lines). Colored dashed lines: initial slope at s = 0 according to Eq. (6)M ;

gray dashed line: asymptotic ratio, Eq. (7)M . For all data in (a) and (b) f = 20, ξ2 = 1,

ms = 1. (c), (d) p and τd/τc from numerical simulations (symbols) compared to branching

process approximation, Eqs. (9)M , (46) (lines).

and 2 are identical to figures 2M and 3M , except that all data from numerical simulations
was replaced with the alternative dynamic scenario, labeled “dynamic∗”. They show that
the results are nearly identical, which might be important if the pruning is inherent to the
cells, e.g., via an engineered density-triggered lysis mechanism.
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FIG. 2. Fixation probabilities and ratios in the multi-stage model. Reproduction of Figure 3M

with numerical results for density-triggered instead of periodic dilutions. (a) τd/τc for small s for

different k in numerical simulations (symbols). Lines indicate the slope predicted by Eq. (6)M

with ξ2 = 2 log(2)2

k . (b) τd/τc from numerical simulations for larger s. (c) p as a function of the

dilution factor f for a constant population and the two dynamic scenarios and different numbers of

stages k. (d) τd/τc for the data shown in (c) compared to the analytical approximation, Eq. (7)M .

Parameters: Ns = 50, f = 20 (a,b) and Ns = 20, s = 0.2 (c,d).
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